Tantéri Julien 2 Mai 2006
Pierre Leduc

IFT 3051
Rapport sur I'implémentation des
micro patterns sous Ptidej

IFT 3051 — Projet informatique.

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

SOMMAIRE :

INtrOAUCHON. . s 4

1. Les MICro Patterns. oo, 6
1.1. Qulest-ce qUUN MICIO PALLEINT ...viuiiiviiiiieieiciiieet s ¢
1.2, Définition des différentes catégories de micro patterns.........cccocueeeeeee 6
1.2.1. Degenerate State and Behaviof..........cccccoevviiiiiinniniiiiiines 7
1.2.2. Degenerate Behavior.ccccovivivininininieiicccccccciceieesessseenenee 7
1.2.3. Degenerate State. ... 7
1.2.4. Controlled Creation.ccceveverererirerieerieeereieieieiereieieeeeeeseseseseseseesesenens 7
1.2.5. WHAPPELS. ittt 7
1.2.6. Data Managers. ... 7
1.2.7. Base CIASSES. .ueveueueueuiuiiiiiriiiiniriresietseteiese et nene 7
1.2.8. INNEIILOLS. .cviiiiiiiciiiiciicc s 8
1.3, Quelques MICIO PALLEINS. w.cveuiieieriiiiieieiiiicreettete e 8
131, BOX: i 8
1.3.2. CODOLHKE. ..ottt 8
1.3.3. SIKu s 8
1.3.4. Immutable. ... 9

2. Travail effectué. ... 10
2.1, Planification SUIVIL. ...ceeueuereueuereueieeiiiiiiiine e resenesesesessaens 10
2.2. Compréhension des micro patterns et de Ptidej.....cceueueuciiiucnnnnee. 10
2.3, ImPlémMentation.......ccccvviiiininiiieiiniiciieee s 11
2.3.1. Concept @ENEIal.....c.cvviiriirininiririiicieieiee e 11
2.3.2. Problémes rencoNtrés........coviiiiiiiiiiiiiiiiniieicenes 12

Micro pattetns sous Ptide; 2 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

I. Chaque classe ne fait pas partie d’un micro pattern unique.............. 12
I1. listOflnheritedActors n’est pas listOfImplementedActors!............ 12
III. Un modele identiquerccuvuviiieiiciiinininiiiecicssiccceeeeiinienas 12
IV. Immuable, une définition IMPrécise.ovumrrrrerrereerererererererenenenes 13
V. Les classes et interfaces héritées et ré implémentées..........coeuvununene. 13
3. Analyse des RESUltats. ..ot 14
3.1, Résultats OBLENUES.cccvviiviiiviiicicc s 14
320 Les diffErences. .o s 19
3.2.1. Le micro pattern Stateless. ... 19
3.2.2. Le micro pattern Common State........cccevvvieiniiiicininineeniniienenn, 20
4. Travaux fUtULS. ..o 20
5. REMErCIEMENTS..c.iiiiiiiiiiiiiiciiiiiteci e 21
CONCIUSION. 1ottt 22
AALIEXES. euvvvirerererereteteieieaeiestt ettt sttt a s b bbb bbbttt ettt e et aea et enebenen 23

Micro pattetns sous Ptide; 3 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

Introduction.

Dans un contexte ou la qualité des logiciels a de plus en plus d’importance,
nous avons besoin de plus en plus de métriques. Comment évaluer la qualité d’une
application ? Certes nous savons qu’un logiciel sous-spécifié, avec peu de classes est
donc peu de modulaire et maintenable, est une application mal congut. Mais nous
savons également qu’il n’est pas bon d’avoir un logiciel sur-spécifié car la lourdeur du
code le rend également impossible a maintenir.

Alors comment évaluer cette qualité ? Joseph (Yossi) Gil et Itay Maman du
Department of Computer Science de I'Israel Institute of Technology nous apporte
quelques éléments de réponse : les micro patterns.

Le principe en est simple : on peut se basé sur un certain nombre de logiciels
que nous considérons comme bien congues pour effectuer des comparaisons. Mais sur
quelles bases effectuer ces comparaisons? Les micro patterns ne se bases pas au niveau
de Parchitecture méme du logiciel, mais plutot au niveau de chaque classe. Comment
est congue une classe, quel héritage fait-elle, comment ré implémente-t-elle les

Micro pattetns sous Ptide; 4 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

méthodes et attributs dont elle hérite, etc... Nous détaillerons plus loin ces points de
comparaison.

Nos objectifs sont les suivants : nous familiariser avec les micro patterns, leur
concepts et spécifications, implémenter leur détection sous Ptidej. Analyser un certain

nombre d’applications déja analysées par Joseph Gil etItay Maman, et ainsi valider nos
résultats par rapport aux leurs.

Micro pattetns sous Ptide; 5 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

1. Les Micro Patterns.

1.1. Qu’est-ce qu'un micro pattern?

Les micro patterns sont similaire aux design patterns, mais ce situent a un
niveau d’abstraction inférieur, on les retrouvent au niveau de 'implémentation méme
des classes. Ils se caractérisent par le fait qu’ils sont détectables automatiquement, d’ou
la possibilité d’implémenter leur détection sous Ptidej.

I existe un catalogue de 27 micro patterns, décliné en 8 sous ensembles. Les
micro patterns sont avant tout détectable pour les logiciels programmés en Java,
cependant leur utilité pourrait s’étendre a d’autres langages objets de niveau équivalent.
Dans notre cas, nous nous limiterons a Java.

Toute classe Java entre dans aucune, une ou plusieurs définitions d’un micro
pattern. Par exemple une classe dont tous les attributs sont statiques fait partie du
micro pattern « Common state ». Mais une telle classe peut aussi faire partie du micro
pattern « Restricted creation» qui est définie comme une classe sans constructeur
public, et qui a au moins un attribut du méme type que la classe.

Ainsi les micro patterns permettent de classifier toutes les classes d’un logiciel,
de mesurer la redondance de chacun au sein méme de Papplication et de comparer ces
taux a ceux obtenues sur des applications de référence comme les JRE de Sun, JEdit,
Tomcat, ou encore Poseidon. Chaque application de référence est choisie pour sa
bonne conception, ainsi il devient simple de voir et comparer les orientations et choix
de conception fait pour un certain logiciel par rapport a une application bien congue,
en occurrence nos applications de référence.

1.2. Définition des différentes catégories de micro
pattems.
Chacune des catégories que nous allons vous présentez représente une
ensemble de micro patterns aux caractéristiques semblable.

Voici un tableau récapitulatif des catégories et micro patterns qui les
composent que nous allons vous détaillé :

Micro pattetns sous Ptide; 6 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

1.2.1. Degenerate State and Behavior.

11 s’agit de la plus simple des catégories, elle regroupe les classes dont I’état est
extrémement dégénéré. Nous considérons la dégénérescence, dans la plus part des cas,
comme le fait qu’une classe ne définie aucune variables ou méthodes.

Cependant, cela ne signifie pas que ces classes sont inutiles, en effet elles sont
souvent utilisées pour définir et gérer des types.

1.2.2. Degenerate Behavior.

Cette catégorie réfere aux classes sans méthode, avec une seule méthode ou
dont les méthodes sont tres simples.

1.2.3. Degenerate State.

Une catégorie de classes qui n’ont aucun état, ou dont I’état est partagé par
plusieurs classes, ou encore qui sont immuables. Une classe immuable ne voit ses
attributs modifiés uniquement dans le constructeur.

1.2.4. Controlled Creation.

Classes dont les constructeurs font l'objet de protocoles de création
spécifiques. 11 s’agit de classes dont la création ne peut étre effectuée directement par
lutilisateur, ou encore dont la création est déja pré etfectuée pour I'utilisateur.

1.2.5. Wrappers.

Les classes de type « Wrappers » encapsule un ou plusieurs attributs centraux
qui restent accessible uniquement par leurs méthodes. Le micro pattern principal de
cette classe est « Box ».

1.2.6. Data Managers.

Le role des classes Data Manager est de gérer un ensemble de données au sein
des variables d’instances.

1.2.7. Base Classes.

La catégorie « Base Classes » regroupe un ensemble de cinq micro patterns
dont le role est de préparer des caractéristiques pour ses sous classes.

Micro pattetns sous Ptide; 7 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

1.2.8. Inheritors.

Trois micro patterns sont regroupés dans cette catégorie, chacun représente
une méthode différente pour 'implémentation des définitions d’une superclasse.

L’implémentation de méthodes abstraite, la ré implémentation de méthodes
déja existantes, et Penrichissement de la classe par de nouvelles méthodes.

1.3. Quelques micro patterns.

Le but de cette section n’est pas de détailler tous les micro patterns, mais de
vous donnez un apercu plus précis de ce qu’est un micro pattern. Si vous souhaitez
connaitre le détail de chacun des différents micro patterns veuillez vous référez au
document « Micro Patterns in Java Code » fournit en annexe.

1.3.1. Box.

Ce micro pattern fait partie de la catégorie Wrappers, il s’agit d’une classe avec
exactement un champ d’instance modifiable par au moins une méthode statique ou
non de la classe. La classe CRC32 du package java.util.crc est un bon exemple de ce
micro pattern, sont état est enticrement représenté par le champ « int crc » modifiable
uniquement par ses méthodes.

1.3.2. Cobol like.

Ce micro pattern fait partie de la catégorie « Degerate Behavior ». Il s’agit
d’une classe avec une seule méthode statique, un ou plusieurs attributs statique, mais
aucun attribut ou méthode d’instance. Les programmeurs débutant auront tendance a
créer des classes principale de type « Cobol Like ». La prévalence de ce micro pattern
est donc faible.

1.3.3. Sink.

La prévalence de cette classe est plutot importante puisqu’on la retrouve en
moyenne dans 13.1% des classes. Il s’agit d’une classe dont les méthodes n’appelle ni
méthode d’instance, ni méthode statiques d’une autre classe.

La classe JarEntry du package java.util.jar.JarEntry est un bon exemple de ce
micro pattern.

Micro pattetns sous Ptide; 8 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

1.3.4. Immutable.

Ce micro pattern regroupe toutes les classes dont les attributs d’instance sont
modifiés uniquement par le constructeur. Ce micro pattern est fréquemment retrouvé,
puisque sa moyenne d’apparition est 6.1%.

Un bon exemple pour ce micro pattern est la classe java.util.jar.Manifest qui a
uniquement deux attributs, tout deux instanciés par le constructeur.

Micro pattetns sous Ptide; 0 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

2. Travail effectué.

2.1. Planification suivit.

Semaine :

Compréhension
des micro

patterns.

2.2. Compréhension des micro patterns et de Ptide;.

La compréhension des micro patterns fat une phase importante de notre
projet. En effet cette dernicre allait conditionnée tout notre développement futur.

Dans un premier temps il était bien sir nécessaire de comprendre qu’est-ce
qu’un micro pattern, mais aussi quels été les différents micro patterns.

Une fois ces concepts maitrisés, il fallait comprendre comment implémenter
leur détection automatique ce qui a nécessité une compréhension approfondit des
¢léments de Ptidej. Un des premiers problemes rencontrés fut le manque
d’information sur la technique de détection automatique des micro patterns. Plusieurs
informations qui aurait été pertinentes pour l'implémentation, sont laissé en suspend.
Ceci nous a forcé a faire quelques hypothéses en rapport avec la technique utilisée.

Nous n’utilisons pas tous les éléments et module de Ptidej, mais nous devions
connaitre le réle de chacun afin de choisir ceux que nous allions réutiliser.

Le premier élément, et certainement le plus important a maitriser fut le méta-
modele PADL qui constitue le cceur méme de 'analyse d’une application par Ptide;.

Micro pattetns sous Ptide; 10 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

C’est sur cet élément que toutes nos détections devaient se baser, il nous a permis de
nous concentré sur la détection des caractéristiques des micro patterns plutot que sur
l'analyse du code source java. Sa compréhension fat donc essentielle dans la suite de

notre pro]et.

2.3. Implémentation.

2.3.1. Concept général.

Nous avons ajouté un projet distinct a Ptidej, ce projet permet d’étendre ses
fonctionnalités a la détection des micro patterns.

Son fonctionnement général est le suivant: le patron de conception visiteur
parcourt le modcle, et exécute les algorithmes de détection ses éléments. Nos
algorithmes sont exécutés a chaque entrée dans une nouvelle classe ou interface.

Notre algorithme fonctionne de la facon suivante :

1. Chaque classe ou interface passe par la détection de chacun des micro
patterns.

2. Chaque détection d’'un micro pattern est effectuée par une classe
différente. Nous avons donc 27 classes permettant de détecter les 27
micro patterns.

3. Une fois tout le modele parcouru nous obtenons une liste des classes
appartenant a chacun des micro patterns. Nos calculs sont effectués a
partir de ce résultat.

Comme nous le précise I'article de Joseph Gil et Itay Maman, la détection des
micro patterns est assez mécanique, il s’agit de vérifier si une classe ou une interface
possede certaines caractéristiques. Donc chacun de nos algorithme de détection d’'un
micro pattern a en charge de vérifier ces caractéristiques, il s’agit donc de parcourir le
modele a la recherche des informations dont nous avons besoin. Par exemple : un
attribut est-t-il statique, ou encore une méthode est-elle héritée, ou ré implémentée?

En ce sens le modeéle crée par PADL cest avéré assez complet, peu
d’informations furent manquantes. La seule modification nécessaire au méta-modcle
tat I'ajout de la propriété «isFinal ». Cette propriété assure qu’un attribut est final,
c'est-a-dire qu’il n’est jamais modifié apres son initialisation.

Micro pattetns sous Ptide; 11 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

2.3.2. Problémes rencontrés.

I. Chaque classe ne fait pas partie d’'un micro pattern unique.

Comme nous lexpliquions plus haut, I'un des problemes majeurs dans
I’évolution de notre projet fit la compréhension et I'interprétation des données de
Particle. Nous nous en sommes aper¢u a nos dépends, lors de l'analyse de nos
premiers résultats les données que nous obtenions étaient bien éloignées de celles de
Joseph Gil et Itay Maman. Dans un premier temps, notre interprétation de larticle
était qu’une classe appartenait a un et un seul micro pattern. En réalité ce n’était pas le
cas, chaque classe peut appartenir a aucun, un ou plusieurs micro patterns. Ce
probléme donna lieu a des modifications mineures du code.

IT. listOflnherited Actors n’est pas listOfImplemented Actors!

Encore une fois un probleme de compréhension faussa nos résultats.
Cependant cette fois il ne s’agissait pas d’un probleme de compréhension de I’article,
mais plutot du modele PADL. Dans le mode¢le chaque classe possede un attribut
« listOfInherited Actors », cet attribut nous donne la liste de toutes les classes héritées.
Nous pensions que cette liste comprenait les classes héritées, mais aussi les interfaces.
Hors la liste des interfaces héritée ce trouvé dans lattribut
« listOfImplementedActors », et bien sar cect influencé fortement nos résultats. Une
tois le probleme réglé, bon nombre de micro patterns se sont retrouvés dans des taux
plus raisonnables.

III. Un modéle identique?

Un probléeme majeur de notre analyse, et malheureusement difficilement
solvable et celui de la structure du modele PADL. Par exemple, notre analyse se base
sur une solution de rétro conception, c'est-a-dire que nous travaillons directement sur
les *.class binaire java. Est-ce que Joseph et Itay ont la méme approche? Nous ne le
savons pas, car cela n’est pas précisé dans article. De plus si c’est la cas est-ce que leur
modele est construit comme le notre? Il y a fort a parier que non.

Cela nous amene a nous poser plusieurs questions. Par exemple dans un code
source Java les classes n’ont pas forcement de constructeur. Mais dans notre modele
toutes les classes on un constructeur, c’est normal, puisque toute les classes en Java on
un constructeur implicite une fois compilé. Hors plusieurs micro patterns se base sur
les caractéristiques du constructeur. Dans ce cas devons nous traiter les
caractéristiques d’un constructeur implicite? Rien ne nous permet de répondre avec

Micro pattetns sous Ptide; 12 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

certitude a cette question. Cependant le modele PADL ne permet pas de différencier
un constructeur implicite ou explicite, en conséquence de quoi nous n’avons d’autre
choix que de les traiter et donc d’éventuellement influencer nos résultats.

IV. Immuable, une définition imprécise...

Dans Tarticle certaine définition sont imprécise, c’est en autre le cas du terme
immuable (imutable). Quand Tarticle traite des attributs immuable, considerent ils ce
type d’attribut comme jamais modifié, seulement modifié lors de I'instanciation de la
classe, ou obligatoirement modifié a I'instanciation? Notre premicre approche fut celle
d’attributs jamais modifiés, mais les résultats étaient tres éloignés de ceux de larticle.
Par la suite nous avons testé les deux autres solutions, et il est clair quun attribut
immuable est obligatoirement modifié dans un des constructeurs de la classe et
uniquement a ce moment.

V. Les classes et interfaces héritées et ré implémentées.

Un autre probléme potentiel a occupé notre esprit pendant quelques temps, il
s’agissait des classes Java. En effet lors de l'analyse effectuée dans I'article, les classes,
et interfaces de Java hérités ou ré implémentées dans 'application étaient incluses dans
les résultats. Devions-nous en tenir compte? Il est évident que oui. Mais dans ce cas
comment approcher le probléeme? Lors de la création du modele PADL, les classes
héritées qui ne font pas partie de I'analyse a proprement dit (comme les classes de Java
par exemple) se voient représentée dans le modele PADL par des éléments appelés
« ghost ». Chaque ghost contient un certain nombre d’informations sur la classe qu’il
représente, mais ces informations ne sont pas aussi complétes que si elle avait fait
partie de Papplication analysée. Apres une étude des informations dont nous avions
besoin et de celles contenues dans les éléments ghost, nous nous sommes apercue que
ces dernicres était suffisante et donc que nous n’avions pas besoin d’intégrer ces
classes au modgcle.

Micro pattetns sous Ptide; 13 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

3.Analyse des Résultats.

3.1. Résultats obtenues.

Les résultats obtenus nous permettent de croire que l'implantation effectuée
est proche de celle de I'article. Malgré quelques différences, les tendances observées
dans nos résultats suivent celles de l'article.

Afin de ne pas influencer les résultats produits dans Iarticle, Joseph Gil et Itay
Maman on segmenté I'analyse des logiciels. Chaque module qui se retrouvant dans
plusieurs applications analysées a été ajouté a un package nommé « shared », et ce
package a été analysé séparément. Par la suite, 'analyse des applications s’est faite sans
les modules ajoutés a ce package.

Il nous est donc impossible de reproduire les résultats de l'article, car les
corpus des classes choisis ne sont pas spécifiés précisément. A moins de reproduire
exactement ces corpus de test, il est impossible d'affirmer a 100% que notre
implantation de la détection des micro patterns est juste. De plus, nous avons
communiqué avec les auteurs de l'article afin d'obtenir des détails sur le package
« shared » et les classes faisant parties de I'analyse, mais nous n'avons pas obtenue de
réponse. Cependant, et afin de valider nos résultats nous avons décidé d'observé les
tendances générales de la prévalence et de la moyenne d'apparition de chaque micro
pattern.

Micro pattetns sous Ptide; 14 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

Le tableau que nous vous présentons ci-dessous montre la différence entre le
nombre de classes que nous avons analysées et le nombre de classes analysées par les
auteurs de larticle :

Nombre de classes | Nombre de classes
Application : que nous avons analysées par les
analysé : auteurs :

Sun 1.4.2 7200 7525
Scala 802 2678
MJC 870 945
Ant 1487 421
JEdit 367 676
Tomcat 3406 1434
Poseidon 6397 8162

JBoss 4321 13623
Shared - 5979

Total 24850 41443

Micro pattetns sous Ptide; 15 01/05/2006

IFT 3051 — Rapport

Pierre Leduc & Julien Tantéri

Particle :

Le tableau suivant présente les résultats que nos avons obtenues a la suite de
nos analyses, ainsi que nos moyennes et les compare avec celles présentée dans

Article
o @ g
Collecti = @ g -3§ & -:E:; 3
ollection é‘l‘—‘l § o < = £ 3 g g & § 5
= 2] = T g = a 5 = = = =

Designator 0.40 0.00 0.23 0.00 0,23 0.47 0.55 0,28 0,34 0,20 0,20
Taxonormy 7.61 3.62 287 3.02 3,27 3,88 5.83 575 449 5,6 2,80 3.50
Joiner 042 1.25 0.1 0.40 0.00 0,15 0.82 0.14 D42 0,47 0,70 120
Paal 7.03 £.24 4 80 3,18 1,81 3,85 5.05 5 G 4,63 5 Bf 2,10 230
Sink 23,42 12.47 11,18 760 7,62 10,80 11,68 11,64 12,08 4 57] 13,10 13,80
Recor 519 .40 2,30 1.28 2,72 276 4.42 478 2,57 4,49 0,50 0.80
DataManager 7.75 3.4 4,37 2.49 3,54 2,83 5.35 5,25 4,53 5 56 1,50 1.80
Function Painter 479 112 1,84 1,34 1,81 2,20 283 4,685 2,51 3,24 1,60 1,80
Funclion Object 5.04 3.37 4,37 2.29 2,45 4,58 5.10 6.1 4,28 5,15 8,50 5.50
Cobal Like 0,35 1,00 1,81 0,34 0,27 0,56 0.85 0,12 0,64 0,54 0,50 0,50
State Less 25,68 16.08 18.21 18,54 14,71 20,89 20,80 23,65 20,14 23,1g| 8,50 .80
Common State 15,54 481 7,24 7.28 0,54 12,21 10.18 0,57 2,81 12,33 2,50 3.80
Canopy 211 12.22 12,53 6,30 11,72 7,72 12,18 2,03 0,08 5,503 5,00 7.70
Immutable 3,10 1.00 4.71 7.13 10,08 8,64 2.81 4,28 5,08 4,15 8,10 8,10
Baox 435 1.12 520 4.30 2,72 478 245 3,30 2,60 2,73 5,50 £.00
Compound Box 5,54 362 8,87 3,33 8,51 5,00 .25 530 575 8,25 5,00 440
Implementor 31,22 43,20 20,66 24,08 1717 24,40 18,78 24,11 25,54 28,24 20,20 21.20
Overrider 17,47 6.48 10,00 760 7,08 2,34 11,19 13,40 10,20 12,54 11,70 10,80
Extender B7 1,87 5.40 1,95 7,08 8,60 7.28 8,30 4,54 403 4,40 420
Outline 271 1.25 2,78 1.14 1,08 1,20 222 1.57 178 2,07 0,50 0.80
Trait 2,85 1.7 1,15 0.67 0,54 1,32 164 1,27 1,35 1,74 0,50 0.80
State Machine 4,64 7.1 437 5,38 1,63 3,41 483 5.44 458 4 5 1,40 1.80
PursType 12.24 2.35 .74 18,98 5,12 14,03 18.05 15,02 12,51 14,04 8,50 .80
AugmentedType 0,74 0.00 0,11 2.15 0,00 1,20 0,38 053 0,64 0.7 0,40 040
PseudoClass 413 1,27 0.48 0.47 0,54 0,78 1,80 1,00 1,33 2,05 0,40 0,40
Sampler 118 125 218 0.54 3,00 1,58 123 075 147 1,204 1,20 120
Restricted Creation 1,80 5,28 1,15 0,13 0,54 0,26 1,80 1,11 1,54 1,49 0,20 150
Coverage 83 84 74 74 71 78 80 21 77,58 71,20

Comme vous pouvez le voir les moyennes que nous obtenons sont tres

similaires a celles de I’article.

Micro patterns sous Ptidej

16

01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

Vous trouverez ci-dessous le diagramme présentant la comparaison des
moyennes d’apparitions obtenues par nos analyses et celles des auteurs de Iarticle :

Moyenne @ Nos résultats
B Resultat de I'article
30,00 -
25,00 =
20,00 —
15,00
10,00 1
5,00
0,00 —M
» X N d @ S @ o8t & .
QQ' &"b Q\}{b C_‘;é}(\ ’:-‘90 CP C_’}' & \{(\ ‘{\QO @Q rbe’ Q {(\Q’Q cge’\} Q_,b
0((S ({00 c® & X ?ﬁ Q é{.\\a.

Comme vous pouvez le voir ces moyennes sont assez similaires, a exception
des micro patterns « State Less » et « Common State » Nous tentons d’apporter une
réponse a ce résultat plus bas.

Micro pattetns sous Ptide; 17 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

Voict le diagramme présentant le total des taux d’apparition et ce pour chaque
micro pattern, en comparaison avec ceux présentés dans I’article :

Total -
O Nos résultats
B Résultats de 'article
30,00 -~
25,00 - M
20,00
15,00
10,00 —‘
5,00 m m
0,00 4= Lc# L[L]TE-T jﬁ#l
Lo O &A@ o @ @ & @ @ @&
o f&“@cﬁ",;\fa‘f’éé‘g@@g\‘/*\,@“’cs.\"’;‘,bo%z‘é’\ S "O@’* S
Q@ai\& (5_0 Q; {5\3\’_&0‘,\3@(\ 050%@2-@00 0\@@ Q <° <</ @(ﬁ & bo %fbboa
PO S @Q@ o G
S <’ P IR N
< v Qg?

Nous constatons que les différences des taux ainsi obtenus suivent
approximativement ceux du diagramme précédent.

Nous avons tenté de prouver formellement que nos algorithmes de détection
¢taient justes malgré le fait que les résultats obtenus difféerent de ceux de l'article.
Malheureusement les technique utilisées pour essayer de démontrer que notre
implantation était juste, n’ont pas été concluent; néanmoins cela ne signifie pas qu’elle
est fausse.

Pour ce faire, nous avons tenté de déterminer un intervalle de confiance pour
la moyenne d’apparition de chacun des micro patterns, et ce afin de prouver la justesse
de nos algorithmes malgré la différence des résultats. Méme si le nombre de classes
analysées est grand, le fait de les regrouper en package de fagon arbitraire, a créer des
concentrations de micro pattern dans certain package et n’a donc pas donné de sens a
ces calculs. Par exemple, selon les valeurs obtenues dans larticle, le micro patterns
« Function Object » se retrouve avec une prévalence de 24.1% dans JEdit et seulement
0.8% dans Scala. Ceci créer une grande variance dans les résultats et a pour effet de
diminuer le niveau de certitude de 'intervalle de confiance.

Micro pattetns sous Ptide; 18 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

3.2. Les différences.

Malgré une analyse approfondie des algorithmes de détection, la prévalence de
certain micro patterns ne correspond pas au données du l'article. Nous vous
expliquons ici les différences et tentons d’apporté des pistes de réflexion pour
solutionner ces problémes.

3.2.1. Le micro pattern Stateless.

Il s’agit du micro pattern dont la différence entre les résultats que nous avons
obtenus et ceux de larticle est la plus discordante. Etrangement, le micro pattern
« Stateless », est I'un des plus faciles a détecter.

Commencons par détailler ce micro pattern :

I1 s’agit d’'une classe ne contenant aucuns champs a I'exception de ceux qui
sont statiques et finaux.

Comme vous pouvez le voir un tel cas ne devrait pas étre difficile a détecté.
Pourtant apres une analyse approfondit de I'algorithme, nous n'avons pu déterminer la
cause de cette différence.

Les informations nécessaires pour la détection de ce micro pattern sont tres
simple et enticrement disponibles dans le modele PADL. 1l y a deux possibilités pour
expliquer cette différence :

1. Un probléme dans la représentation dans le modéle PADL. Pourtant
des caractéristiques similaires sont utilisées dans PADL pour détecter
d'autres micro patterns avec succes. De ce fait cette explication nous

parait peu probable.

2. Une autre explication a ce probleme peut ce trouvée dans la description
méme du micro pattern. Encore une fois, la caractéristique de ce micro
pattern étant tres simple, nous ne somme pas en mesure d'affirmer qu'il
y ait une erreur d’interprétation ou de spécification de la description ou
de I'implantation proposée dans article.

Micro pattetns sous Ptide; 19 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

3.2.2. Le micro pattern Common State.

La différence entre les résultats obtenus et les résultats observés dans 'article
nous porte a croire que la définition de ce micro pattern est incomplete. En effet, ce
micro pattern se retrouve dans la méme catégorie que le micro pattern « Stateless », qui
lui-méme, semble ne pas étre détecté correctement. Le probléme de détection de ce
micro pattern semble étre lié a celui du micro pattern « Stateless ». Donc, le probleme
de détection des deux micro patterns devrait étre abordé d’une maniere globale.

4. Travaux futurs.

Plusieurs évolutions de notre projet peuvent étre prévues :

e [a premicre est lintégration de nos fonctionnalités a I'interface
graphique de Ptidej. Cette intégration n’a pas été faite car actuellement il
y existe deux modules d’analyse des classes d’une application dans
Ptidej: Le «simpleClassLoader» qui comme sont nom lindique
n’intégre pas toutes les informations de I'application dans le modcle, et
le module « completeClassLoader » qui lui analyse en détail les classes de
Iapplication et construit le modéle en conséquence. Actuellement le
module utilisé par Tinterface graphique de Ptidej est le
« simpleClassLoader ». Hors Dlanalyse des micro patterns exige
I'utilisation du « completeClassLoader ». Une évolution possible est
donc de rendre accessible ce module et d’intégrer notre fonctionnalité
directement par l'interface graphique.

e Un deuxie¢me travail qu’il serait intéressant d’effectuer est de valider nos
résultats a la main. Certes nous avons déja effectué cela sur de petites
structures de test, mais il serait intéressant de le faire sur une grosse
structure comme le JRE de Sun Microsystems.

e [a dernicre évolution qui nous parait intéressante serait de connaitre
avec exactitude le corpus des classes intégrés dans le paquet « Shared »
ainsi que celles analysée dans les différentes applications. Nous les
connaissons déja approximativement, puisque pour le paquet « Shared »,
il s’agit des classes partagées par les différents logiciels analysées. 1l serait
tres utile d’en avoir une liste exacte. Ceci nous permettrait de faire une
analyse plus proche de celle réalisée par Joseph Gil et Itay Maman, et
donc de comparer nos résultats avec plus d’exactitude.

Micro pattetns sous Ptide; 20 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

5. Remerciements.

Nous tenons a remercier chaleureusement Yann-Giael Guéhéneuc, pour le
professionnalisme et la disponibilité dont il a fait preuve tout au long des étapes de
notre projet. Il est clair que sans lui ce projet n’aurait pu aboutir et aussi bien se
dérouler. En outre nous tenons a préciser que les relations avec ce professeur ont été
particulierement agréables. Donc un grand merci a un grand professeur.

Nous tenons également a remercier Stefan Monier pour le temps qu’il consacre
au fil des sessions au bon acheminement des projets, et surtout a la possibilité donnée
aux ¢étudiants de développer leur esprit de recherche et de développeur, sans lui ce
cour ne pourrait exister.

Micro pattetns sous Ptide; 21 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

Conclusion.

Les micro patterns semblent étre une bonne approche dans Iépineux
probleme de I'évaluation de la qualité d’un logiciel. Certes ¢a ne résout pas tout le
probleme, mais cela apporte des éléments de solutions dans un domaine entre trop mal
connu.

Nous pouvons dire que notre implémentation des micro patterns est
relativement proche de celles de article. La connaissance exacte des corpus des classes
utilisées dans « shared » et choisis dans I’analyse devrait permettre de lever les points
d’ombre restants et de valider avec exactitude nos résultats. Cependant en I’absence de
réponse des auteurs de I'article, nous ne pouvons lever cette indétermination.

Micro pattetns sous Ptide; 22 01/05/2006

IFT 3051 — Rapport Pierre Leduc & Julien Tantéri

Annexes.

Micro pattetns sous Ptide; 23 01/05/2006

Micro Patterns in Java Code -

Joseph (Yossi) Gilf Itay Maman

Department of Computer Science
Technion—Israel Institute of Technology

{ yogi | imaman } @ cs.technion.ac.il

Abstract Keywords

Micro patterns are similar taesign patterngxcept that micro pat- Program Analysis, Design Patterns, Implementation Patterns
terns stand at a lower, closer to the implementation, level of ab-
straction. Micro patterns are also unique in that they are mechan- 1. |ntroduction

ically recognizable, since each such pattern can be expressed as a We all know what makes one algorithm better than another: time,

formal condition on the structure of a class. . ; AR
space, random-bits, disk access, etc. are establishgektiveand

This paper presents a catalog of 27 micro-patterns defined on
Java clgsspes gnd interfaces. T?ﬁe catalog cagtures a wide spec-we" defined metrics [14] to be employed in making such a judge-

v of comimon programming practice. nclucing a partcular 7. 1 COMUSSL, b assessmentofaully of sofure g s
and (intentionally restricted) use of inheritance, immutability, data prospect. P 4 :

: . X . on the topic (see e.g., [11, 12, 28, 30]), a question sucHsaBé-
management and wrapping, restricted creation, and emulation ofSi n A better than Desiaz?” can. still. onlv be decided by force
procedural-, modular-, and even functional- programming para- 9 9t - SHEL, onty y

digms with object oriented constructs. Together, the patterns presen?f the argumentatlpn, and ultimately, by the personalsrijective
perspective of the judge.

a set of prototypes after which a large portion of 8llva classes - o . . .
and interfaces are modeled. We provide empirical indication that The research de_scnbed in this paper s concerned v_\nth_the Impor-
tant, yet so recalcitrant, problem of finding sound objective meth-

this portion is as high as 75% . ods of assessment of design. Medical experiments can prove that
A statistical analysis of occurrences of micro patterns in a large a certain medication is bettgr.than anotherpin treatinga s Fe)acific ail-
software corpus, spanning some 70,080a classes drawn from a L ng a sp
ment. We all want to carry similar controlled experiments to prove

rich set of application domains, shows, with high confidence IeVelthat certain design methods are more likely to produce better soft-
that the use of these patterns is not random. These results indi-Ware than othergsl However. in contrast vx)//ith r?wan other natural
cate consciousness and discernible design decisions, which are sus-) ’ y

tained in the software evolution. With high confidence level, we canSCier.]C.e.S’ experiments on large scale software developm_ent are so
also show that the use of these patterns is tied to the specificationg:)?gglzmzmgoes“y that much of the research on the topic aban-
or the purpose, that the software realizes. Our attack gn.this multiple Gordian knot is by taking a different

Thetraceability abundancand thestatistical significancef mi- anale at it Rather than sEb'ectin the develo yment grocess to ex-
cro pattern occurrence raise the hope of using the classification of 9 :) 9 P P

. L .._perimentation, we apply statistical toolsdgistingartifacts of the
Zzl;tgirgr:ztggggzeuzﬁ‘tt;ems for a more founded appreciation of Its'development. Instead of dealing with “isbetter thanB?” sort of

questions, our research should help in rigorously determiitiogy
is A different thanB?". We can also show that certain design tech-

Categories and SUbjeCt Descriptors nigues are more common than others. The judgement of the quality
D.3 [Software]: Programming Languages of design can perhaps then be reduced to the judgement of the abun-
dance of the design, and the quality of the software that uses it.
This angle is made possible by the bountiful class structure of
Geheral .Term.s _ Java [3], together with the colossal, publicly available, base of soft-
Design, Object-Oriented Programming ware in the language, which opens the road for sound claims and

“Research supported in part by Israel Science Foundation (ISanderstanding of the way people write software (more precisely, on
grant no. 2004460. he software written by people). We argue that this class structure

FWork is supported in part by the IBM faculty award. makes it possible to find traces of design, specifically of what we
shall callmicro patterns

1.1 Traceability of Design

Permission to make digital or hard copies of all or part of this work for ~ Can design be traced and identified in software? The prime can-
personal or classroom use is granted without fee provided that copies arelidates of units of design to look for in the software are obviously
not made or distributed for profit or commercial advantage and that copiesdesign pattern§22]. However, despite the dozen years that passed
bear this notice and the full citation on the first page. To copy otherwise, to since the original publication [21], and the voluminous research

republish, to post on servers or to redistribute to lists, requires prior Specmcensuing it, attempts to automate and formalize design patterns are
permission and/or a fee. ’

OOPSLA05October 16-20, 2005, San Diego, California, USA. scarce. Systems like DisCo [31], LePUS [16, ISfjNEandHEDGE-
Copyright 2005 ACM 1-59593-031-0/05/001G55.00. HOG [6], constraint diagrams [27], Elemental Design Patterns [39],

and others did not gain much popularity. Specific research on detecthe claim that micro patterns can enhance the following aspects of
tion of design patterns exhibited low precision, typically with high software engineering productivity:

rate of false negatives (see e.qg., [9, 25]). Indeed, as Mak, Choy and
Lun [29] say, “..automation support to the utilization of design
patterns is still very limited

Traceable Patterns. To overcome this predicament, we define
the notion oftraceable patternswhich are similar to design pat-
terns, except that they are mechanically recognizable and stand at
a lower level of abstraction. A pattern is traceable if it can be ex-
pressed as simple formal condition on the attributes, types, name
and body of a software module and its components

It is required that these patterns are not random; they must cap-
ture a non-triviaidiom of the programming language which serves
a concrete purposeYet, by definition, traceable patterns stand at
a lower level of abstraction than that of the classical collection of
design patterns [22]. This is because traceable patterns are tied to
the implementation language and impose a condition on a single
software module.

Micro Patterns. Traceable patterns can be defined on many
kinds of modules, including code fragments, routines, classes and
packages. We coin the termicro patternsas a short hand for
“class-level traceable patterhsThis paper is concerned with mi-
cro patterns, and specifically in the context of thea program-
ming language. When no confusion can arise we shall, for the sake
of brevity, call these just patterns.

We present a catalog of 27 micro patterns, organized in 8 cate-1

gories, including idioms for a particular and intentionally restricted
use of inheritance, immutability, wrapping and data management

classes, object oriented (OO) emulation of procedural, modular ancﬁ’

even functional programming paradigms, innovative use of class
structure, and many more.

Examples. A simple example for concreteness is thampler
pattern in theControlled Creationcategory. This pattern defines
classes which havepublic constructor, but in addition have one
or morestatic public fields of the same type as the class it-
self. The purpose of such classes is to give clients access to pr
made instances of the class, but also to create their ownSdine
pler is realized by, e.g., clagSolor from packaggava.awt of
theJava standard runtime environment, which offers a spectrum of
pre-defined colors as part of its interface.

Another example of a micro pattern is tiemutable pattern [24]
in the Degenerate Stateategory. This pattern prescribes an object
whose state cannot be changed after its construction.

The reader is invited to take a sneak preview at the entire list of
patterns in Sec. 3 for further examples.

e More Efficient Design. The catalog captures a substantial

body of knowledge gathered from a massive software cor-
pus. The use of this knowledge base can make the design
and implementation stages more efficient, by using one of
the recipes in the catalog, rather than designing a class from
scratch.

The mental effort saved by using familiar, named patterns for
certain classes, can be redirected to more important and diffi-
cult tasks.

Code Learning and ReuskEamiliarity with the catalog makes

it possible for programmers to quickly understand an over-
whelming majority of thelava software base. They can then
focus more attention to the smaller fraction of the remaining
code, which presumably requires closer examination.

Training. By learning the patterns in the catalog, program-
mers can be quickly introduced to the tools of tradeaia
programming.

Automation. Micro-patterns traceability makes it also pos-
sible to enrich automatically generated documentation pro-
duced by tools such as JavaBoc

.3 New Language Constructs

The restrictive nature of the patterns in the catalog, combined
ith their abundance might tell that the myriad of combinations
y which the different features of the underlying programming lan-
gauge is too great.

Consider the many different kinds of fields thalwA class can
have: they can bstatic
inherited or introduced by the class, and they can exhibit one of four
different kinds of visibility. Methods show an even greater vari-
ety, since they can also ladstract
er'efining and, there are also constructor methods, and anonymous
static initializers, ... Our count shows that there are over forty dif-
ferent kinds of class members, without even considering variety due
to type signature or naming.

Micro patterns are not only patterns of class design. They are
also patterns (in the information theoretical sense of the term) by
which the programmer makes selections from this huge space of
different combinations of class features. By recognizing that the
expressive power of the programming language might be too large,
we may be lead not only to a more structured system of teaching

ornonstatic ,final ornotfinal

,final , overriding, or even

design, but also of maturing some of these combinations into full

1.2 Micro patterns and Productivity

Other than serving for a more rigorous study of design, our cata-
log, just as many other collection of patterns, can helgggoumen-
tation, in conveying &knowledge baseand in setting aocabulary
for communication among and between coders and designers.

The vocabulary that the catalog sets can come handy in the de-
scription of implementation strategies of design patterns. Terms
such asmmutable, Box, Canopy, Pure Type or Implementor (all pat-
terns from the catalog) are useful in describing the implementation
of design patterns such & CORATOR BRIDGE, PROXY, etc. On
a broader perspective, software frameworks may use this terminol-
ogy to describe the various sorts of classes which take part in th
framework.

Our empirical study demonstrates the consistent abundance

blown language constructs.

The precise definition of micro patterns makes it possible to evolve
some of the patterns into language constructs, in the manner sug-
gested by Agerbo and Cornils [1] regarding the incorporation of
design patterns into a programming language (interestingly, the mo-
tivation for Java’s newenum facility is reflected by the prevalence
of Augmented Type andPool micro pattern).

1.4 Statistical Inference

We next pose several research questions regarding the use of mi-
cro patterns in practice. In the paper we apply statistical inference
in an attempt to answer these. For this purpose, we assembled a
qarge corpus oflava software from 14 different software collec-
0}ions, from four different application domains. In total, the corpus
s[panned over seventy thousand classes. The statistical analysis was

each of the patterns; further, the entire catalog characterizes abou

three quarters of the classes in our corpus. These finding supporthttp://java.sun.com/j2sef/javadoc

carried out on the results of matching the micro patterns againstthe 1. We show that the catalog touches a great deal of the software:
corpus. Three out of four classes can be characterized by the catalog;

Langauge Constraints or Software designe found that mi- many carry even more than one pattern label (see Sec. 7).

cro patterns are abundantJava. A basic question is whetherthe 2 we show that the differences between pattern prevalence lev-
existence and choice of use of these patterns is an artifact of lan- els in different software collections are significant (Sec. 8).
gauge design rather than software design? In other words, we would o _
like to know whether this abundance reflects true design decisions Therefore, we have that the patterns as a whole are significant in
rather than following the invisible tracks and paths that Jnea characterizing a large portion of software collections. Of course, we
designers have set in the language. cannot show that the characterization of software by patterns, i.e.,
The analysis of our empirical results suggest that the latter is verythese 5 bits of information, are directly tied with quality. Nonethe-

unlikely. Specifically, the findings in Sec. 8 indicate that with high 1€ss, one may still be able to draw conclusions from the fact that
confidence leveld < 0.01), it is not the case that patterns occur in @ pattern is used extensively in software that came from respected

Java with a fixed random probability, irrespective of the program- Vvendors such as Sun or the Apache group. _

ming context. The question of the extent by which the micro patterns in the cat-
ificati . ¢ ianAnoth lated alogcontributegto the global (or local) software quality, is difficult,
Specification Design or Software DesignAnother related ques- and must be left open for debate or further research, in which the

tion is whether the choice of patterns is decreed by the softwaregnjing of this paper, as well as the statistical methods we employ
specification, rather than being a matter of choice of the |mplemen—may become useful.

tor. The.answer we give in Sec. 10 is that both factors contribute to Outline. The remainder of this paper can be divided to three parts. The
this choice. _]) o first part is concerned with the description of micro patterns: Sec. 2 gives an

On the one hand, at high confidence level (in the statistical sensverview of the patterns catalog, while the individual patterns are described
of this phrase), we can claim that different implementations of the in detail in Sec. 3. Sec. 4 then elaborates further on the notion, including
same specification witendto use the same patterns. a comparison to design patterns, and to what may be catlpiémentation

On the other hand, the vendor or software team has a degree dfattemns4]. o _ _ _
freedom in making this choice, i.e., not all implementations of the The second part is dedicated to the experiments. Sec. 5 defines thg notion

e . R of entropy of a pattern. The software corpus is described in Sec. 6, while the

same specification will follow the same combination of patterns. .,re of the experimental results are in Sec. 7.

Moreover, we can claim, and again with the soundness of statis- |n the third part of this paper, we move on to statistical analysis of the
tical high confidence, that the exercise of this degree of freedom isempirical results. Sec. 8 employs statistical tests to check whether the dif-

not random, but rather an expression of a specific and discerniblderence in prevalence levels are significant. Sec. 9 is an intermediate dis-
style. cussion which helps in understanding the significance of the differences.

Sec. 10 also shows that the choice of pattern for each class ifec' 10 continues the statistical investigation, by checking whether the pat-
. L " erns make statistically significant distinction between different versions of
sustained in different editions of the same software.

the same software.
Individual Value of Each of the Patterns? A fundamental ques- Related work is the subject of Sec. 11. Sec. 12 reflects back on the results,
tion regarding micro patterns is whether each of the patterns in theand raises directions for further research.
catalog is valuable. For example, one may argue that patterns such
asPseudo Class and Cobol like capture bad coding practices and 2. The Micro Patterns Catalog
thus should not be included in our catalog. A similar reasoning may compare micro patterns to design patterns, implementation

suggest that the abundance of patterns suctesignator or Record patterns, and other kinds of patterns, we need to become familiar
is so small that they deliver no practical value to a programmer. | i the micro patterns themselves.

It turns out that our research can provide an objective, quantita- 1his section overviews the micro pattercatalog briefly pre-

tive answer to this question othe value of a single patterm’We gonting the patterns. A more detailed description of the patterns is
show that each of the patterns matters for the statistical distinction;, o subsequent Sec. 3.

between software products of different origins.)
Furthermore, we show that since a class can be characterized b2.1 The Construction of the Catalog

more than one pattern, the catalog is, in a sense, greater than the 1, process by which the catalog was conceived may be instruc-

sum of its parts. _ _ _ _ _ tive for understanding its structure. Variations on this process may
Specifically, we define an information theoretical metric of the help in finding other micro patterns which we have missed.

amount of design information, i.e., the number of bits, that the cat- e search for micro patterns started by considering the various

alog reveals on a software collection. Our experiments indicate thal;,qs of features that &va class may have. We tried then to work

in average the catalog provides about 5 bits of design informationg,t meaningful and useful restrictions of the freedom in using these

on the classes in our corpus, and, this number is greater than the5tres. To do so. we raised questions sucthasv‘could a class
sum of the information that the individual patterns provide (Sec. 7). \yith no fields be useful?“ are there any classes of this sort in ex-

Can Patterns be Used to Characterize Software?s explained istence?, “ how can these classes be characteriZzednversely,
above, the question of whether the existence of patterns matter tdnaving thought of a useful programming practice, we tried to trans-
the quality of the design or the coding is in a sense philosophical.late it into a condition on the code, and then inspect classes that
The reason is that we do not yet have sufficient objective means ofnatched this condition.
quality evaluation. We implemented each of these initial “pre-patterns” and applied

Still, even when these means mature, or if we suffice ourselvesthem to the classes in the corpus. Manual inspection of the code of
with a subjective evaluation, an important question is whether thethese classes lead to a refinement of some of the definitions, aban-
choice of patterns makes a significant and meaningful influence ordonment of others, merges and splits of others, until the catalog
the software. reached its current shape.

Our answer to this question is two fold. Thus, the search for patterns started from definitions, which lead

to code inspection, and then to the refinement of the definitions.

It is tempting to do the converse, i.e., cluster the existing code Tab. 1 gives an alternative, textual representation of the informa-
base, and discover patterns in it, devoid of any a priori dictations.tion depicted in Fig. 1. As can be seen in the table (and also in
To do so we, we tried several approaches. For example, we broké-ig. 1), the categories are not disjoint. There are a number of pat-
down the conditions we already discovered into atomic predicatesterns which belong in two categories. The last column of the table
(“basic features” in the learning lingo), such as “number of instance shows the additional category of such patterns.
fields is 17, “no superinterfaces”, etc. For examplePseudo Class pattern belongs both to tHgegener-

The values of these predicates on the classes in the software coate State and Behavi@nd theBase ClassesategoriespPure Type
pus were then fed into an associations rules analyzer [47]. In returnjs aBase Classvhich also exhibit®egenerate State and Behavior
the analyzer generated long lists of dependencies between thesBuch patterns are described in one of their categories, and merely
predicates, sorted in descending order of strength. mentioned in the others.

Unfortunately, none of these dependencies revealed something This table also tersely describes each of the patterns. Itis impor-
that we could have interpreted as a purposeful pattern. Other estaltant however to note that this one line description, by nature, cannot

lished techniques of machine learning did not work for us. be precise or complete. To see that, recall that there are many, not
necessarily disjoint, kinds of methods whidkva admits, includ-
2.2 The Structure of the Catalog ing inherited methods, static methods, concrete methods, abstract

Consider Fig. 1, which shows a global map of the catalog, includ- methods, constructors, etc.
ing the 8 categories, and the placement of the 27 micro patternsinto There are therefore several ways of translating a simple statement
these. (The patterns themselves are described in brief in Tab. 1.) such as‘all methods are public”into a precise and complete con-
dition on the code. For example, one needs to decide whether the

¢ morerestricted Behavior more general ———> universal quantification in this statement precludes inheriting pro-

T Degenerate State Base Degenerate tected methods.
and Behavior Classes tate Hence, the descriptions presented in Tab. 1 should serve merely

s / Outline \ as an intuitive summary. The definitions in the forthcoming Sec. 3
S Designator [State Machine Common s rovide a more precise description of the micro patterns
R Taxonomy Pure Type . h omn:o:l tate p p p p .
3 Joiner Augmented Type Trait mmutable
§ Pool Pseudo Class Canopy . . .
g -~ 3. Description of the Micro Patterns
= Inheritors Compound Box In this section, we will try to explain better thrirposeof each
w rplementor pattern, give an example of its use, and derive a more precise def-
g Extender Wrappers inition out of it. Still, for space limitations, we cannot provide the
® Degenerate Dat full formal expression of the condition of each pattern.
3 Behavior Manzgaers The largest patterns bulk is described in Sec. 3.1, which is con-
N cerned with theDegenerate State and Behavi@egenerate State
B oo oy | Data Manager Sink Controlled Degenerate BehaviandRestricted Creatiomategories.
§ |\ Covoltike Creation Containment-based patterns are described in Sec. 3.2. Patterns

Restricted Creation _related to inheritance, i.eBase ClasseandInheritorsare the sub-
Sampler ject of Sec. 3.3.

Rounded rectangles denote pattern categories in which state, be-
havior, or construction is degenerate, rectangles denote cate-

«—

3.1 Degenerate Classes

gories of patterns for containment, while trapezoids denote pat- Out of the 27 patterns in the catalog, there are 21 patterns in
terns used for inheritance.) which the state, behavior or the creation are degenerate in one way
Figure 1: A map of the micro patterns catalog or another. This section describes the 12 patterns out of these which

have no other category. The remaining 9 patterns are described to-

. . . . ether with their other respective category.
The X-dimension of Fig. 1 corresponds to class behavior. Cate-g P gory

gories at the left hand side of the map are those of patterns which3 1.1 Degenerate State and Behavior
restrict the class behavior more than patterns which belong to cate-

gories at the right The first, and most simple category of micro patterns, includes

2 . .) those interfaces and classes in which both state and behavior are
Similarly, the Y-dimension of the figure corresponds to class . ;
extremely degenerate. This degeneracy means, in most cases, that

state: _Categorles at the upper portion of the map are of pattern§he class (or interface) does not define any variables or methods.
restricting the class state more than patterns which belong to cate-

. Despite these severe restrictions, classes and interfaces which fall
gories at the bottom of the map. .) . A .
. . into this group are useful in tasks such as making and managing
Altogether, there are four categories (depicted as rounded corners L . S
;) -) . . global definitions, class tagging, and more generally for defining
rectangles in the figure) in which the class behavioral, or creational .
F = and managing a taxonomy.
or variability (state) aspects of a class are degenei¢generate

State and BehaviorDegenerate StafdDegenerate Behavioand In addition to the patterns listed below, this category also (_:ontalns
. . the Pure Type, Augmented Type, Pseudo Class, andState Machine
Restricted Creation

Depicted as rectangles in Fig. 1, there are two categories pertain[nlcro patterns which are described in Base Classesategory.

ing to containment: ThBata Managersategory is that of patterns
which directly store and manage data; Weapperscategory con-
tains patterns which wrap other classes.

Finally, there are also two categories pertaining to inheritance:
Base Classesind Inheritors These categories are portrayed as
trapezoids in the figure. For example, a class thatplements the empty interfac€lone-

1. Designator. The most trivial interface is an empty one. Interest-
ingly, vacuous interfaces are employed in a powerful programming
technique, of tagging classes in such a way that these tags can be
examined at runtime.

Main Pattern Short description Additional
Category Category
Degenerate Designator An interface with absolutely no members.
Stagte and Taxonomy An empty interface extending another interface.
Behavior Joiner An empty interface joining two or more superinterfaces.
Pool A class which declares only static final fields, but no methods.
o | Degenerate Function Pointer A class with a single public instance method, but with no fields.
3 Beﬁavior Function Object A class with a single public instance method, and at least one instance field.
e Cobol Like A class with a single static method, but no instance members
: Stateless A class with no fields, other than static final ones.
@ | Degenerate | Common State A class in which all fields are static.
?—, State Immutable A class with several instance fields, which are assigned exactly
§ once, during instance construction.
4] Restricted Creation | A class with no public constructors, and at least one static field of
Controlled the same type as the class
Creation Sampler A class with one or more public constructors, and at least one static
field of the same type as the class
o Box A class which has exactly one, mutable, instance field.
S | Wrappers Compound Box A class with exactly one non primitive instance field.
51 PP Canopy A class with exactly one instance field that it assigned exactly once, Degenerate
3 during instance construction. State
g Data Record A class in which all fields are public, no declared methods. Degenerate
Managers Data Manager A class where all methods are either setters or getters. Behavior
g Sink A class whose methods do not propagate calls to any other class.
Outline A class where at least two methods invoke an abstract method on “this” | Degenerate
Trait An abstract class which has no state. State
Base State Machine An interface whose methods accept no parameters.
El Classes Pure Type A class with only abstract methods, and no static members, and no fields| Degenerate
L Augmented Type Only abstract methods and three or more static final fields of the same typeState and
) Pseudo Class A class which can be rewritten as an interface: no concrete Behavior
8 methods, only static fields
Implementor A concrete class, where all the methods override inherited abstract methods.
Inheritors Overrider A class in which all methods override inherited, non-abstract methods.
Extender A class which extends the inherited protocol, without overriding any methpds.

Table 1: Micro patterns in the catalog

able Zindicates (at run time) that it is legal to make a field-for-field constructors are not inherited, an empty class may contain construc-
copy of instances of that class. tors. ATaxonomy class may not implement any interfaces.

Thus, aDesignator micro pattern is an interface which does det This micro pattern is very common in the hierarchyJa¥A’s ex-
clare any methods, does ndefineany static fields or methods, and ception classes, such aSOFException which extenddOEx-
does not inherit such members from any of its superinterfaces. ception. The reason is that selection otatch clause is de-

A class can also bBesignator if its definition, as well as the defin- termined by the runtime type of the thrown exception, and not by

itions of all of its ancestors (other th@bject), are empty. its state.

PatternDesignator is the rarest, with only 0.2% prevalence in our 3. Joiner. An empty interface which extends more than one inter-
software corpus. It was included in the catalog because it presentface is called aoiner, since in effect, it joins together the sets of

an importantlava technique, which is also easily discernible. members of its parents.
2. Taxonomy. Even if the definition of an interface is empty it may For example, the interfaddouselnputListener joins together
still extend another, potentially non-empty, interface. two other interfaces: interfaddouseMotionListener and in-

Consider for example interfad2ocAttribute (defined in pack- terfaceMouseListener

agejavax.print.attribute). This interface extends inter- An empty class which implements one or more interfaces is also
faceAttribute in the same package without adding any further a Joiner. For example, claskinkedHashSet marries together
declarations. InterfacBocAttribute is used, similarly to the classHashSet and three interface€loneable , Serializ-

Designator micro pattern, for tagging purposes—specifically that able andSet .

the attribute at hand is specialized for what is known as “Doc” in .)
the JRE. 4. Pool. The most degenerate classes are those which have neither

) .)) . state nor behavior. Such a class is distinguished by the requirement
An empty interface which extends a single interface is callgaka 4t it declares no instance fields. Moreover, all of its declared static
onomy, since it is included, in the subtyping sense, in its parent, but fie|gs must be findl Another requirement is that the class has no
otherwise identical to it. methods (other than those inherited fr@ject , or automatically
There are also classes which as@onomy. Such a class must sim- generated constructors).
ilarly be empty i.e., add no fields nor methods to its parent. Since

3If a class hadinal instance fields, then, each of its instances
2This, and all subsequent examples are drawn from the standarshay have a different (immutable) state, and therefore it cannot be
Java Runtime Library. characterized as having no state.

A Pool is a class defined by these requirements. It serves a the3.1.3 Degenerate State

purpose of grouping together a set of named constants. TheDegenerate Stateategory pertains to classes whose instances
Programmers often usaterface s for thePool micro pattern. have no state at. all, or that their. state is shared by qther classes,
For example, packagavax.swing includes interfac&wing- or that they are |mm_utable. In thls category we also findTila@
Constants which defines constants used in positioning and ori- Pattern which is defined under its oth&ase Classescategory
enting screen components. (Sec. 3.3.1), and theanopy pattern (defined und&k/rappers.

The pattern, also callédonstant interface anti-pattern{7], makes 8. Stateless. If a class has no fields at all (except for fields which

it possible to incorporate a name space of definitions into a class by?r€ Potfstatic andfinal), then itis stateless. The behavior of
adding arimplements clause to that class. such a class cannot depend on its history. Therefore, the execution

of each of its methods can only be dictated by the parameters.

3.1.2 Degenerate Behavior Micro patternStateless thus captures classes which are a named

The degenerate behavior category relates to classes with no methc-Ollectlon of procedure_as, ano_l is arepresentation, in the ob_Ject-orlented
orld, of a software library in the procedural programming para-

ods at all, classes that have a single method, or classes whose metﬁ’-

ods are very simple. 'gm])
A famous example of th&tateless micro pattern is thérrays

5. Function Pointer. Very peculiar are those classes which have no ¢/ass: from packagava.util

fields at all, and only a singleublic instance method. 9. Common State. At the next level of complexity, stand classes
that maintain state, but this state is shared by all of their instances.
Specifically, a class that has no instance fields, but at least one static
field is aCommon State.

. For example, the clasSystem manages (among other things) the
Instances ofunction Pointer classes represent the equivalent of a global input, output, and error streams.

function pointer (or a pointer to procedure) in the procedural pro-
P (p P) b P A Common State with no instance methods is in fact an incarnation

gramming paradigm, or of a function value in the functional pro- . .
gramming paradigm. Such an instance can then be used to makgf themodulaf programming paradigni the Java world.

an indirect polymorphic call to this function. The task of function 10. Immutable. An immutable class is class whose instance fields
composition (as in the functional programming paradigm), can beare only changed by its constructors.

achieved by using two such instances. The Canopy is an immutable class which has exactly one instance
field. Its description is placed under its other categdWappers

An example is classdapNameParser (which is defined in pack-
agecom.sun.jndi.ldap.LdapNameParser). This class has
a singleparse method, with (as expected) a string parameter.

6. Function Object. The Function Object micro pattern is similar - . i
to the Function Pointer micro pattern. The only difference is that (?ec(.j 3];2';)' M?rslgelneral IS wﬁrﬁ‘r‘tas‘l; mtl(;ro .pa:tern, }Nhl'é:h
Function Object has instance fields (which are often set by the class Stands forimmutable classes which haveeast twanstance ields.

constructor). Thus, an instance Rinction Object class can store Classjava.util jar.Manifest is animmutable class since
parameters to the main method of the class. assignment to its two fields takes place only in constructors code.

The Function Object pattern matches many anonymous classes in 3-1.4 Controlled Creation

the JRE which implement an interface with a single method. These There are two patterns in this category, which match classes in
are mostly event handlers, passed as callback hooks in GUI librariesvhich there is a special protocol for creating objects.

(AWT and Swing). Hence, such classes often realizeGloa- The first pattern prevents clients from creating instances directly.
MAND design pattern. The second pattern provides to clients ready made instances.

7. Cobol like. Formally, theCobol like micro pattern is defined by ~ 11.Restricted Creation. A class with no public constructors, and at
the requirement that a class has a single static method, one or morgast onestatic field of the same type as the class, matches the
static variables, and no instance methods or fields. This particulaRestricted Creation micro pattern.

programming style makes a significant deviation from the object Many SINGLETON classes satisfy this criteria. A famous example
oriented paradigm. Although the prevalence of this pattern is van-is java.lang.Runtime

ishingly small, instan n be found even in mature libraries. .
shingly small, instances can be found eve ature libraries 12. sampler. The Sampler matches classes class with at least one

Beginner programmers may tend to uSebol like for their main public constructor, and at least osgatic field whose type is the

class, i.e., the class with function same as that of the class. These classes allow client code to create
new instances, but they also provide several predefined instances.
public static void main(String[] args) An example is clas€olor (in packaggava.awt) with fields

such aged , green andblue .
The prevalence ofobol like is not high, standing at the 0.5% level .
in our corpus. However, we found that it occurs very frequently 3-2 ~Containment
(13.1%) in the sample programs included with dnea Tutorial [10] We identified six patterns by which classes manage their internal
guides. fields. There are three patterns in iNeapperscategory, concerned
with classes in which there is a principal field. The case of multiple
The Degenerate Behaviarategory also includes two other pat- fields is covered by the three patterns in hata Managerscate-
terns: Record, which has no methods at all, abdta Manager, in gory.
which all methods are either setters or getters. The two also belongithe term “modular’ means here module-oriented, where mod-
in theData Managersategory, and are described below (Sec. 3.2.2) ules are software units such ADA [44] packages and modules
with the other patterns of that category. in MoDULA [37].

3.2.1 Wrappers 3.3.1 Base Classes

Wrappers are classes which wrap a central instance field with theifThis category includes five micro patterns capturing different ways
methods. They tend to delegate functionality to this field. The mainin which a base class can make preparations for its subclasses.

pattern in this category iBox. The case that the wrapper protects 19 5 iine. An Outline is an abstract class where two or more

the field from changes is covered ynopy. There are cases in o jared methods invoke at least one abstract methods of the current
which there is an auxiliary field; these are captured by pattem: (“this”) object

ound Box. . .
pou X For example, the methods f#va.io.Reader rely on the ab-

13. Box. A Box is class with exactly one instance field. This in- stract method
stance field is mutated by at least one of the methods, or one of the

static methods, of the class. read(char acfl, int i int)

ClassCRC32(in thejava.util.crc package) is an example of Obviously, Outline is related to theTEMPLATE METHOD design

this micro pattern. Its entire state is represented by a single fieldPattern.

(int crc), which is mutated by method 20. Trait. TheTrait pattern captures abstract classes which have no
update(int i) state. Specifically, arait class must have no instance fields, and at

14. Canopy. A Canopy is a class with exactly one instance field least one abstract method.

which can only changed by the constructors of this cass. The termTrait follows the traits modules of Séhli, Ducasse,
. . Nierstrasz and Black [38]. A trait module, found in e.g., the
The nameCanopy draws from the visual association of a trans-

; 7=) SCALA [35] programming language, is a collection of imple-
parent enclosure set over a precious object; an enclosure which mented methods, but with no underlying state
makes it possible to see, but not touch, the protected item. ’ '

Classinteger , which boxes an immutablet field, is afamous ~ FOr instance, classumber (of packaggava.lang) provides an
example ofcanopy. implementation for two methodghqrtVaIue() . and for method
byteValue() . Other than this implementation, class Number
expects its subclass to provide the full state and complement the
implementation as necessary.

As explained above, since tl@anopy pattern captures immutable
classes, it also belongs in tBegenerate Stateategory.

15. Compound Box. This is a variant of 8ox class with exactly one
non-primitive instance field, and, additionally, one or more primi-
tive instance fields. The highly populsector class matches the
Compound Box pattern.

21. state Machine. It is not uncommon for an interface to define
only parameterless methods. Such an interface allows client code to
either query the state of the object, or, request the object to change
its state in some predefined manner. Since no parameters are passed,
3.2.2 Data Managers the way the object changes is determined entirely by the object’s

Data managers are classes whose main purpose is to manage tﬁgr‘am'c type.)
data stored in a set of instance variables. This sort of interface, captured by tBeate Machine pattern, is typ-

ical for state machine classes.

For example, the interfagava.util.lterator describes the
protocol of the standardava iterator, which is actually a state ma-
chine that has two possible transitiomext() andremove() .

16. Record. JAVA makes it possible to define classes which look
and feel much likePascAL [46] record types. A class matches
the Record micro pattern if all of its fields argublic and if

has no methods other than constructors and methods inherited fror‘q.he third methodhasNext() is a query that tests whether the

Object . . R ; i .
o) . iteration is complete. In the state machine analogy, this query is

Perhaps surprisingly, there is a considerable number of examplegqivalent for checking if the machine’s final state was reached.

of this pattern in thelava standard library. For example, in pack-)]

agejava.sql we find clasDriverPropertyinfo which is 22. Pure Type. A class that has absolutely no implementation de-

a record managing a textual property passed to a JDBC driver. tails is aPure Type. Specifically, the requirements are that the class
is abstract, has no static members, at least one method, all of its

methods are abstract, and that it has no instance fields. In particular,
any interface which has at least one method, but no static definitions
is aPure Type.

17. Data Manager. Experienced object-oriented programmers will
encapsulate all fields ofRecord and use setter and getter methods
to access these.

We say that a class istaata Manager if all of its methods (including

) ; . An example is clasBufferStrategy , Which is found in pack-
inherited ones) are either §etters or geﬁers) agejava.awt.image.BufferStrategy . As the documen-
Recall thatData Manager micro pattern (just as the previously de- tatjon of this class states, itépresents the mechanism with which to
scribedrecord) also belong to th®egenerate Behaviarategory. organize complex memory ”..The concrete implementation can
18. Sink. A class where its declared methods do not call neither only be fixed in a subclass, sincéjdrdware and software limita-
instance methods nor static methods &ir. tions determine whether and how a particular buffer strategy can
ClassJarEntry of packagejava.util.jar.JarEntry is be implementetl. Indeed, this class has nothing more than four
an example oSink. abstract methods which concrete subclasses must override.

. 23. Augmented Type. There are many interfaces and classes which
3.3 Inheritance declare a type, but the definition of this type is not complete with-
Finally, we have eight micro patterns which capture some of the out an auxiliary definition of amnumeration An enumeration is
common techniques by which classes prepare for inheritance (thex means for making a new type by restricting the (usually infinite)
Base Classesategory), or interact with their superclass (ther- set of values of an existing type to smaller list whose members are
itors category). individually enumerated.

*We used the most conservative approach for the detection of sucAYpically, the restricted set is of size at least three (a set of cardinal-
methods. ity two is in many cases best representethaslean).

For example, methodexecute andgetMoreResults in in- Micro patterns are special in that the condition described in the

terfacejava.sql.Statement take anint parameter that sets condition Def. 1 applies to classes and interfaces. Lying outside the
their mode of operation. Obviously, this parameter cannot assumescope of this paper are patterns whose condition applies to other
any integral value, since the set of distinct behaviors of these methkinds of modules. We propose the temano-patterngor traceable

ods must be limited and small. This is the reason that this interfacepatterns which stand at the method or procedure level. The term
gives symbolic names to the permissible values of this parameter. milli-patternscan then be used for traceable patterns at the package

Formally, anAugmented Type is aPure Type except that it makes Igvel (or to any other kind of class grouping or mode of coopera-
three or morestatic final definitions of the same type. tion).

Pattermugmented Type pattern is quite rare (0.5%), probably thanks Sec. 4.1 expla_ins the four_characteristics of tra_ceable patterns.
to the advent of the Enum mechanism to the language. Next, Sec. 4.2, discuss the differences between micro patterns and

design patterns, which are mostly due to the difference in abstrac-

24. Pseudo Class. A Pseudo Class is an abstract class, with noin- tjon Jevel. Finally, Sec. 4.3 discusses the notiofinaplementation
stance fields, and such that all of its instance methodstmtact patterns and compares these with micro-patterns.

static data members and methods are permitte&séudo Class

could bemechanicallyrewritten as an interface. For instance, class 4.1 Traceable Patterns

Dltl:tlonary Id ,bthe ab.st'iract parenttof ?ny class which maps keys to We next discuss in greater detail the four properties of traceable
values, cou) e rewr .en asanin er_ace.) patterns:recognizability purposefulnessprevalenceand simplic-
Pseudo Class is an “anti-pattern” and is not so common; its preva- jty,

i 0,
lence is only 0.4%. Recognizability. The term‘mechanically recognizableineans

3.3.2 Inheritors that there exists a Turing machine which decides whether any given
The three disioint patt in this cat d to three dif module matches this condition. Thus, a condition “the module dele-
€ three disjoint patterns in this category correspond 1o three ci “gates its responsibilities to others” is not recognizable. On the other

ferent ways in which a class can use the definitions in its SUPeT-Lond a predicate such as “each method invokes a method of another

class: implementing abstract methods, overriding existing methOdScIass with the same name”, can be automatically checked.

and enriching the inherited interface. The catalog does not include .
patterns for classes which mix two or more of these three. P_u_rposefu!ness. By purposeful_we mean that th_e condltlon
defining a micro pattern characterizes modules which fulfill a re-
25. Implementor. An Implementor is a non-abstract class such that curring need in a specific manner. The condition that the number
all of its the public methods were declared as abstract in its superof methods is divisible by the number of fields does not constitute a

class. pattern. In contrast, micro patte@anopy describes classes which
An example is clasSimpleFormatter , which is defined inthe have a single instance field that is assigned only once, at construc-
java.util.logging package). This class has single public tion time. This idiom typically serves the purpose of managing
method, a single resource by a dedicated object, a practice which Strous-

trup [43] calls “Resource acquisition is initialization”.

. Prevalence. The prevalenceof a pattern (with respect to a cer-
which was declared abstract by the superclessmatter (ofthe iy cojlection of mgdules) is the Sortion c()f modulgs matched by
same package). this pattern. Prevalence is an important indication that a micro pat-
26. Overrider. A class where each of its declared public methods tern is purposef(l

overrides a non-abstract method inherited from its superclass. Such The lower (and upper) bound on prevalence is determined by
a class changes the behavior of its superclass while retaining its procommon sense. The programming technique captured bpdhe
tocol. A typicalOverrider class is théBufferedOutputStream ignator pattern is so unique that a prevalenc® &% is acceptable.
class. The prevalence ofnplementor, on the other hand, is circa0%.

27. Extender. An Extender is a class which extends the interface SINCe patterns are made for distinguishing unique properties, we
inherited from its superclass and super interfaces, but does not ovetill ténd to negate the pattern definition if its prevalence is greater
ride any method. than50%.

For example, clas®roperties (in java.uti) extends its Simplicity. - The simplicity requirement is not only a matter of
superclassHashtable) by declaring several concrete methods, 2esthetics: By sticking to first order predicate logic (FOPL), when-
which enrich the functionality provided to the client. None of these €Ver possible restricted in Horn clauses form, should make it easier

methods overrides a previously implemented method, thus keepindor the pattern recognizer to suggest corrections in case the pattern

the superclass behavior intact. Note thatExtender may be re- 1S violated. ,
garded as an instantiation of a degenerate mixin class [8] over itsTogether, these _four properties make traceable patterns useful: as
superclass. patterns they bring value to the manual work of the software en-

gineer in capturing a common and meaningful idiom of the pro-

. gramming language. Traceability, expressed in the simplicity and
4. On the Nature of Micro Patterns recognizability properties, help in automating some of the engi-

Having described the patterns themselves, we are now ready t@eer’s work.
discuss theaotionof micro patterns in some more detail.])

As explained above, micro patterns are a kind of traceable pat-4.2 Micro Patterns vs. Design Patterns
terns. One of the difficult tasks in software development is bridging the
gap which separates the initishprecise and informasystem re-

format(LogRecord logrecord) ,

DEFINITION 1. A traceable pattern is aondition on the at-

tributes, types, name and body of a module and its compqnentseqearly, it is not sufficient—classes in which the number of meth-

V\{hicrll is recognizable (mechanically), purposeful, prevalent and ,ysis prime are prevalent, but have no common purpose.
simple.

quirement from theprecise and formamanifestation of software

in code written in a specific programming language. But even the
smaller steps along the bridge over this gap cannot be all formal,
precise or automatic. Design patterns make one important such
step, while implementation patterns, which are formally defined

construct, stand between the code and design patterns.

In most cases, a micro pattern is not a strategy of implementation
of a design pattern. For example, we discover thattbmpound
Box micro pattern which is quite popular, is not acknowledged as a
design pattern.

There are however several obvious relations between design pat-
terns and micro patterns. For example, Buaction Object micro
pattern, is very useful for implementing tlBDMMAND design pat-
tern;Sampler is one implementation of theLYWEIGHT design pat-
tern; most of the classes which realize BI®GLETON pattern will
match theRestricted Creation micro pattern, etc.

Just like design pattern, implementation patterns followean
tensional mode of definiticemd satisfy théocality criterion (in the
sense of the work of Eden and Kazman [18]). Still, there are several
consequences to the fact that micro patterns stand at a lower level
of abstraction:

e Scope.First, micro patterns are of a single software module
in a particular programming language. Examining the list of
micro patterns in Sec. 3 we can see that they are all about in-
dividual Java class es andnterface s. Design patterns
on the other hand are not so tied to a specific language, and
often pertain to two or more classes, sometimes to an entire
architecture.

e RecognizabilitySecond, a crucial property of micro patterns
is that they are easily recognizable by software, which ren-
ders a smooth path to automation. Florijn, Meirjer and Win-
sen [20] enumerate three key issues in automating design pat-
terns: application validation and discovery As van Emde
Boas argues [45], the expressiveness of the language used for
defining patterns, affects the complexity of these issues, and
in particular detection.

In using a formal language, which is at a lower level than
the free text description of the semantics of design patterns,
automation issues become much easier. Therefore, micro pat-
terns are, by definition, automatically recognizable.

We can also envisage a CASE tool which would help in their
application, by offering a boilerplate to be filled by the im-
plementor. For this reason, we try, whenever possible, to
present the condition in the form of Horn clause constraints.
As demonstrated (in another context) by Demsky and Ri-
nard [15], this particular form can be used to dedume;
tomatically or (for better performance) semi-automatically,
specific rules for correcting the input so that it matches a for-
mal constraint. Such rules can be used by the CASE tool to
generate useful warnings and advice to the programmer.

The requirement that micro patterns are written in FOPL makes
it possible to deterministicallghecka proof that one imple-
mentation pattern is mutually exclusive, contained, or over-
lapping with anothef. In contrast, distinct design patterns,
presented as solutions to two different problems, may be struc-
tured similarly, but be different in their intent. (A famous
example is made by th8TRATEGY and ADAPTER design

’If we stick to full blown FOPL, it is impossible to automatically
generate such a proof; it is possible to do so if patterns are con-
strained to use an appropriately selected subset of FOPL.

patterns.) It follows that there is an inherent ambiguity in the
process of discovering design patterns in software.

Context ExistenceThird is the observation that micro pat-
terns do not usually provide “a solution to a problem in a
context”. The design problem and the context in which it oc-
curs are not present when an implementation is carried out.
Indeed, much of the work on the automation of design forgets
the problem and the context.

Micro patterns are not different. For example, 8iek micro
pattern, occurring in about a sixth of all classes, is too general
to be tied to a specific design problem. Nevertheless, there is
value in adhering to the pattern. This practice will reducing
code complexity, and promoting uniformity, decomposabil-
ity, and clarity.

Another example is thBox micro pattern, which represents

a useful programming technique. Incidently, this technique

occurs in many and not very related design patterns.Bbire

is therefore a term which can be used to describe and help
understand many classes. Yet, it may serve a multitude of
unrelated problems.

A third example is the=unction Pointer pattern, whose sin-
glepublic instance method may serve many different pur-
poses. Yet, it is not easy to propose a unifying characteristic
of these.

Using the semiotic approach [34] to the interpretation of pat-
terns, we have that in traceable patterns there is distinction
between signifier and signified. A micro pattern is thus “a so-
lution in search of a problem”. It serves a concrete purpose,
but the programmer is still required to find the right question.

Usability of Isolated PatternsA fourth difference, resulting
from the loss of the problem and context in micro patterns, is
the utility of individual patterns. Knowledge of the problem
and context makes it possible for a design pattern to provide
much more information on the proposed solution. Thus, even
a single design pattern is useful on its own. In contrast, mi-
cro patterns are not as specific; their power stems from their
organization in a catalog, a box of tools, each with its own
specific purpose and utility.

Given an implementation task, the programmer can choose an
appropriate pattern from the catalog. Our empirical findings
show that, in the majority of cases, such a micro pattern will
be found. Admittedly, the nature of micro patterns is such that
they do not provide as much guidance as design patterns. On
the other hand, the guidance that a micro pattern does provide
is suited for automatization, and does not rely as much on
abilities of the individual taking that guidance.

Empirical EvidenceFifth, and perhaps most important is the
fact thatimplementation patterns carry massive empirical evi-
dence of their prevalence, their correlation with programming
practices, and the amount of information they carry. With the
absence of automatic detection tools, claims of the prevalence
of design patterns is necessarily limited to the yield of a man-
ual harvest.

4.3 Micro Patterns vs. Implementation eral patterns in the catalog, and the whole catalog can present more
Patterns information than the simple classification of modules inte- 1

Beck [4] presents an extensive discussion of implementation pat-categories. _ _ _
terns. His book enumerates as many as 92 such patterns, all pre- Ve will now make precise the of amount of information that a
sented in the context of thBMALLTALK [23] programming lan- cat_alog carries. First recall the definition of the information theo-
guage. These patterns touch software units of different levels: start/€tical entropy.
ing at patterns of message send, going through patterns for tempo-
rary variables, followed by patterns detailing method implementa- 1
tion, climbing up to instance variables, and ending with single class

DEFINITION 2. Let&s, ..., &, be agistribution, i.e., for alf =
,...,kitholdsthat0 < ¢ < 1,and ,_, . & = 1. Then, the
entropyof &y, ..., &k is o

design. >
Beck enumerates several roles tinplementation patterrserve, H=H,...,&)=— & log, &, (1)
including help in reading the code, accelerating the implementation, 1<i<k

aid in communication between programmers and documentation. h h 1 is tak be 0 — 0.1
These roles are not foreign to those of design patterns. CapturingW ere the summangl log, &; is taken to be 0 i€; =0, 1.

existing lore, and means of communication are essential character- The entropy is maximized when the distribution is to equal parts

istics of all kinds of patterns. _ i.e.,pi=4foralli=1,...,k, inwhich cased = log, k.
Yet, implementation patterns.come handy at a different stage of To gain a bit of intuition into Def. 2, let us apply it to a single
the development process. Design patterns are mostly useful at thﬁattern with prevalencg(with respect to some software collection).

drawing board. Implementation patterns are most effective WhenWe can say that the pattern occurs with probabgitand not occur
the programmer opens the langauge specific integrated developmenf probabilityl — ¢, giving rise to the following entropy
environment.
However, the fact that implementation patterns show up at a later —€log, & — (1 — &) logy (1 —€).
stage of the development process does not mean that they are alwa;

traceable. Consider for example Beckemposed Methodmple- that pattern does occur carrieshits of information (the event oc-

mentatlon pattern. This patte_rn INStructs SALLTALK program- -\ sin only2L- of all cases), but these bits have to be weighted with
mer (indeed, a programmer in any language) to continue breaklng[he‘ 2

methods into smaller parts until each method satisfies the (im‘ormal)the probability” of the event. The second summand corresponds to

condition that of serving a single identifiable task, and all operation complement event, i.e., that the pattern does not occur.
in it stand at the same level of abstraction. It is difficult to fathom Fig. 2 shows the entropy of a single pattern as a function of the

?uppose thag = 2% Then, the first summand states that the fact

a simple formal predicate on the body of a method that will check prevalence.
whether this condition is true. .
Another example is implementation pattd?tuggable Selector . —
(similar to C’s function pointers) which may not be easy to detect.
At the other end stand patterns suchQisery Method, Com- 08 ~
paring Method, andSetting Method, which are traceable. In our 071 /
terminology, these are called nano-patterns. = %% /
The other important difference distinguishing micro patterns from g os a
implementation patterns is that micro patterns can be used at the laté 0. 1
design stage as well as during the implementation. While doing 5 |

class design, micro patterns can be employed to explain the kind of
operations expected in inheritance, and for better characterization
of the classes. At the implementation stage, the micro pattern(s)
prescribed to the class can be used as a guiding recipe, which can 00% s 10% 15% 20% 25% 30% 35% 40% 45% 50%
even be checked automatically. Prevalence

0.2

. Figure 2: Entropy vs. prevalence level of a single pattern.
5. Definitions g pyvs-p gep

The fact that micro patterns are defined on specific locations in ~ As the figure shows, the entropy achieves its maximal value of 1
the code (classes, or more generally any other module), rather thawhen the prevalence is 50% and drops to zero when the preva-
on the entire software fabric lets us make precise notions describindence is zero. The entropy is 0.724fp) = 20%, drops to 0.47

pattern interaction. whené(p) = 10%, to 0.29 wherg¢(p) = 5%, to 0.08 wherg(p) =
We denote the prevalence of a patterhy £(p). Let p; andp. 1%, and to 0.01 wheg(p) = 0.1%.
be patterns. We say that is containedin p. if p1 — p2; they The entropy of an entire catalog is defined as the entropy of the

aremutually exclusivéf p; — —po, i.e., a module can never match distribution of the many different combinations of patterns in the
more than one of them. Thep-prevalenceof the patterns (with catalog

respect to a software collection) is the prevalenge @fp2; they are]

independentf their co-prevalence is a product of their respective ~ DEFINITION 3. Theentropy of a catalog” (with respect to a

prevalence levels, i.e§(p1 A p2) = £(p1)&(p2). certain software co)llgction) is
Let P = {pi1,...,pn} be a patterns catalog. Then, tbever- _
ageof the catalog is th&(p: V --- V p,), i.e., prevalence of the H(P) = _Qe Pf(Q) log, £(Q),
©

disjunction of all patterns in the catalog.
A catalog is more meaningful if the patterns in it are not mutually wherepP is the power set o and£(Q) is the prevalence of the
exclusive. If this is the case, each module can be described by sevevent that all patterns in Q occur and all the patternsin, @ do

notoccur, i.e., Collection | Domain Packages Classes| Methods
- . 1 Kaffe? JRE impl. 75| 1,220| 10,945

Kaffe!** | JRE impl. 152 | 2,511| 22,022

§Q)=¢@ p and A Sun*! JRE impl. 67 991 | 9,448

req PEPAQ sun'2 JRE impl. 131| 4,336| 36,661

An entropy of (say) 4 of a catalog with respect to a certain soft- Sun*? JRE impl. 170 | 5213 44,747
ware collection can be understood as equivalent to the amount of | Sun™*! | JRE impl. 314 | 8216| 73,834
information obtained by a partitioning of the collectionl® = 2* Sun®#2 | JRE impl. 330 | 8,740| 76,675
equal parts. We can think af’(") as theseparation power of the Scala Lang. tools 96 | 3,382 32,008
catalog MJC Lang. tools 41 1,141 10,927
Information theory tells us that entropy is additiveproperty in Ant Lang. tools 120 | 1,970 17,902
the sense that the entropy of a catalog of independent patterns is the| JEdit GUl 23 805 6,110
sumof the entropies of each of these events. If patterns in a catalog | Tomcat Server 280 | 4,335| 43,868
are mutually exclusive, then the entropy of the catalogssthan Poseidon | GUI 594 | 10,052| 77,988
the sum of the individual entropies. JBoss Server 998 | 18,699| 157,460
As mentioned before, the patterns in our catalog are not mutually | Total 3,391 | 71,611 620,595

exclusive, which makes the catalog more informative. On the other
hand, we do not expect software patterns to be truly independent. In
order to evaluate the contribution of each pattern to the expressive
power of the catalog, we can examine its marginal contribution to

the entropy of the catalog.

DEFINITION 4. The marginal entropyof patternp € P with
respect to a catalod, written H (p/P) is

H(P) — H(P\ {p}).

The sum of the marginal entropies can be greater, smaller or
equal to the entropy of the whole catalog.

If a pattern is identical to one of the other patterns in the catalog,
or to any combination of these, then its marginal entropy is 0. Con-
versely, suppose that a certain pattern partitions every combination
of the other patterns in the catalog into two equal parts. Then, the
marginal entropy of this pattern is 1.

6. Data set

In the experiments, we measured the prevalence level of each
of the patterns in the catalog in large collectionslafa classes,
available in the.class binary format. As explained in Sec. 2
the analysis was carried out by invoking a set of predicates over all
classes in the collection.

A corpus of fourteen large collections dvA classes, totalling
over three thousand packages, seventy thousand classes and half a
million methods served as data set for our experiments. Tab. 2 sum-
marizes some of the essential size parameters of these collections.

The table does not include a line count of the collections in the cor- 2.

pus, since many of the collections are available in binary format
only.

As can be seen in the table, the collections, although all large,
vary in size. The smallest collectiodEdit) has about 800 classes
and 6,000 methods, while the largedB¢ss) has almost a thou-

sand packages, 18,699 classes and 157,460 methods. The median 3.

number of classes is about 4,000.
These collections can be partitioned into several groups

1. Implementations of the standaddvA runtime environment.
The JavA runtime environment (JRE) is the language stan-
dard library, as implemented by the language vendor, which
provides to theJAvA programmer essential runtime services

Table 2: The JAvA class collections comprising the corpus.

of patterns in the course of evolution of a library, we used the
vanilla Sun implementations of versions 1.1, 1.2, 1.3, 1.4.1,
and 1.4.2 of the J2SE specification. These are denoted re-
spectively bySun®?, Sun'?, Sun!®, Sun'#! and Sun“?

in Tab. 2.

Second, to compare the incidence of micro patterns across
different implementations of the same specification, we used
implementations of several other vendors. The first of which
is the JRE implementation included in the Kaffe profect
which is a non-commercial JVM implementation. Our corpus
includes two versions of this implementatiokaffe’* and
Kaffel** distinguished by their JRE version.

We had also tried to expand our corpus with three commercial
JRE libraries supplied with theses JVM productsiBiy 32-

bit Runtime Environment falava 2, version 1.4.2; (iiJ2SE

for HP integrity, version 1.4.2; and (iii\Weblogic JRockit
1.4.2by BEA. Eventually, these three collections werat
included in the corpus since they all exhibited an overwhelm-
ing similarity with Sun'42. Our experiments indicated that
these three were in many ways a port of the Sun implemen-
tation. Obviously, no significant data can be drawn from the
analysis of these.

GUI Applications. The corpus includes two GUI applica-
tions: JEdit—which is version 4.2 of the programmer’s text
editor written inJava with a Swing GUI, andPoseidon—a
popular UML modeling tool delivered by GentlewardWe
used version 2.5.1 of the community edition of the product.)

Server ApplicationsThere were two collections in this cate-
gory: JBoss—the largest collection in our corpus is version
3.2.6 of the famous JBo¥sapplication server (JBOSS AS)
which is an open source implementation of the J2EE stan-
dard, Tomcat—part of theApache Jakarta Projett, which

is a servlet container used by http servers to allawa code

to create dynamic web pages (version 5.0.28).

such as text manipulation, input and output, reflection, data 8http://www.kaffe.org

structure management, etc.

Shttp://www.gentleware.com

We included several different implementations of the JRE in *°http://www.jboss.org
our corpus for two purposes. First, to examine the stability *http://jakarta.apache.org

4. Compilers and Langauge Tool$his category includesnt—
another component of the Apache proféea build tool which
offers functionality that is similar, in principle, to the popu-
lar make utility (version 1.6.2), anficala—version 1.3.0.4
of the implementation of the Scala multi-paradigm program-
ming language [35]; andylJC—version 1.3 of the compiler
of multiJava, a language extension which adds open classes)
and symmetric multiple dispatch to the language.

Thus, the corpus represents a variety of software origins (acad-

emia, open source communities and several independent comme
cial companies), interaction mode (GUI, command line, servers,
and libraries), and application domains (databases, languages, te
processing).

Collection | Packageg Classes| Methods
Sunt42 272 7,525| 66,676
Scala 68 2,678 25,186
MJC 32 945 8,607
Ant 45 421 3,883
JEdit 21 676 4,653
Tomcat 132 1,434 14,367
Poseidon 477 8,162 61,645
JBoss 750 | 13,623| 110,820
Shared 346 5,979 55,431
Total 2,143 | 41,443| 351,268

Table 3: The JAava class collections in the pruned corpus.

Note that the totals in the last line of Tab. 2 include multiple
and probably not entirely independent implementations of the sam
classes. For experiments and calculations which required indepe
dence of the implementation, we used only collecttam®*2 out
of the nine different JRE implementations, Also, as many as 5,979

classes recurred in several collections since software manufacturertg

tend to package external libraries in their binary distribution.

To assure independence, all such classes were pruned out of thejr

respective collections and included in a pseudo-collection name
Shared. (Interestingly, the 100 or so classes comprising the famous
Junit [5] library, were found in several collections in our corpus
thus turningShared into a super set of thdunit library.) This
process defined Rruned software corpus by

Pruned = {Sun**?, Scala, MJC, Ant, JEdit, Tomcat,
Poseidon, JBoss, Shared}.

The total size of this corpus and each of the (pruned) collections
in it is reported in Tab. 3. We can see that the elimination of dupli-
cates and dependent implementations halved the size of the corpu
In total, more than 41,000 independent class comprise the prune
corpus.

7. Experimental Results

The experimental results of running the pattern analyzer on the
pruned corpus are summarized in Tab. 4.

€
n=

last rows give a summary of each collection. (Note that due to over-
lap between the patterns, columns do not add up to the total cov-
erage in the last row.) The seven last columns give summarizing
statistics on each of the patterns.

In this section we take mostly a broad perspective in the inspec-
tion of this information, and will be interested in the more global
properties of the catalog, including coverage, entropy, and marginal
entropy. In the next section, we will march on to a deegtatistical
analysisof this information.

Coverage. The most important information that this table brings
f5in the penultimate line, which shows the coverage of our catalog.
We see thaT9.5% of all classes irsun’*? are cataloged. The col-

ﬁction with least coverage Ant, but even for it, one in two classes

is cataloged. The total coverage of the (pruned) corpus is 74.9%.
The fluctuation in coverage level is not very great—the standard
deviation (penultimate column) is 11%.

CoNcCLUSION 7.1. Three out of four classes match at least one
micro pattern in the catalog.

The above, just as all subsequent conclusions, refer to what
can be observed in our corpus. There is still a need for ap-
propriate statistical tools to support an extrapolation of such

statements to e.g., the universe ofJalla programs.

Prevalence. In examining Tab. 4 in greater detail, we see that the
most prevalent group is this of the inheritors micro patterns. About
35% of all classes not only inherit from a parent, they also adhere
to a specific, particularly restrictive style of inheritance. The most
common micro pattern, in this category and overallyiglementor
which occurs in about 21% of all classes. This finding indicates
wide spread use of the technique of separating type and implemen-
ation, by placing the implementation in a concrete class.

Also large isOverrider, which occurs in about 11% of all classes.
A large group is also that of classes with degenerate state, whose
tal prevalence is about 24%.

{

CONCLUSION 7.2. One in four classes is degenerate in respect
o the data it maintains.

In this group, the largest pattern$sateless (8.9% prevalence),
which is unique in that it has no instance fields.

The base class category is also quite significant, occupying about
15% of all classes. The largest pattern theruig Type with 10.6%
prevalence.

Itis interesting to see that tfgink, a class which essentially does
not communicate with any other class, is also very frequent, with
prevalence of 13.9%.

Together, the five leading patternsiplementor, Sink, Overrider,

Pure Type andStateless) describe 23,848 classes, which are 58% of

gne classes in our pruned corpus.

CoNCLUSION 7.3. The majority of classes are cataloged by one
of the five leading patterns.

Separation Power. Conc. 7.3 does not mean that we can make
do with only five patterns. The other patterns in the catalog con-

The table shows the prevalence, coverage, entropy and margindfibute to the information it provides. One of the reasons is that the
entropy of the patterns in the corpus. The body of the table presentsicro patterns are not mutually exclusive. There are classes in the

for each micro pattern and each software collectionptieealence
of the micro pattern in the collection, that is, the percentage of
classes in this collection which match this micro pattern. The two

2http://ant.apache.org

corpus which match more than one micro pattern. Fig. 3 depicts the
number of classes in the pruned corpus for each multiplicity level.
We see that 31% of the classes matched a single pattern, 30%
matched two patterns, 13% matched three patterns. Out of the total
41,443 classes in this corpus there was also a significant number of

Collection . .
e| g &| z| &| | z| g| ¢|| &| z| | 8| | °| =
= 5 = g g 4 g & @ =3 > < <
N - o — m g_).)U
=1 «« 5 ~
Designator 0.2% 0.1% 0.2% 0.0% 0.0% 0.2% 0.1% 0.3% 0.3% 0.2% 0.5% 0.2% 0.0% 0.3% 0.1% 0.05
Taxonomy 4.4% 2.7% 3.2% 1.4% 1.2% 2.6% 3.8% 3.2% 3.5% 3.5% 2.9% 3.2% 1.2% 4.4% 1.1% 0.13
Joiner 0.7% 1.8% 0.0% 0.0% 0.0% 0.6% 0.3% 2.2% 0.9% 1.2% 0.7% 0.6% 0.0% 2.2% 0.8% 0.09
Pool 1.9% 1.0% 4.6% 1.7% 1.0% 1.5% 1.7% 2.9% 2.7% 2.3% 2.1% 1.7% 1.0% 4.6% 1.1% 0.15
Sink 20.6% | 14.0% | 10.7% | 14.3% 9.0% | 12.1% | 11.3% | 12.7% | 13.5% 13.9% | 13.1% | 12.7% 9.0% | 20.6% 3.3% 0.67
Record 0.4% 0.3% 0.2% 0.2% 0.6% 0.3% 0.4% 1.1% 1.5% 0.8% 0.6% 0.4% 0.2% 1.5% 0.5% 0.08
Data Manager 1.8% 0.2% 1.2% 4.0% 1.5% 1.7% 1.9% 1.8% 2.4% 1.8% 1.8% 1.8% 0.2% 4.0% 1.0% 0.04
Function Pointer 2.0% 0.9% 1.8% 1.2% 1.2% 2.8% 1.7% 1.7% 1.0% 1.6% 1.6% 1.7% 0.9% 2.8% 0.6% 0.11
Function Object 7.7% 0.8% 9.1% 1.4% | 24.1% 2.4% 6.3% 4.2% 5.2% 5.5% 6.8% 5.2% 0.8% | 24.1% 7.1% 0.23
Cobol Like 0.4% 0.6% 0.5% 0.7% 0.1% 1.0% 0.5% 0.7% 0.4% 0.5% 0.5% 0.5% 0.1% 1.0% 0.2% 0.07
Stateless 9.8% [14.6% 7.6% 5.7% 6.1% | 10.3% 6.8% 9.6% 6.8% 8.9% 8.6% 7.6% 5.7% | 14.6% 2.8% 0.38
Common State 2.4% 0.3% 2.1% 0.2% 3.4% 1.3% 1.8% 7.1% 3.6% 3.8% 2.5% 2.1% 0.2% 7.1% 2.1% 0.14
Canopy 9.8% 3.9% | 11.0% 4.5% | 26.5% 4.6% | 10.3% 6.3% 4.5% 7.7% 9.0% 6.3% 3.9% | 26.5% 7.1% 0.28
Immutable 7.6% 5.6% 7.0% 2.1% | 12.0% 4.0% 6.2% 6.1% 4.6% 6.1% 6.1% 6.1% 2.1% | 12.0% 2.7% 0.28
Box 4.6% | 14.5% 3.3% 3.1% 1.3% 8.6% 2.5% 7.8% 5.1% 6.0% 5.6% 4.6% 1.3% | 14.5% 4.1% 0.22
Compound Box 6.0% 5.1% 3.6% | 10.0% 5.8% 3.1% 3.8% 3.7% 4.4% 4.4% 5.0% 4.4% 3.1% | 10.0% 2.1% 0.24
Implementor 26.0% | 10.5% | 17.8% | 17.1% | 37.1% | 12.7% | 22.1% | 23.1% | 15.8% 21.3% | 20.2% | 17.8% | 10.5% | 37.1% 8.1% 0.63
Overrider 12.4% 4.1% 8.1% 4.0% | 23.1% | 20.2% | 16.8% 7.0% 9.4% 10.8% | 11.7% 9.4% 4.0% | 23.1% 6.9% 0.23
Extender 4.3% 1.6% 5.3% 4.8% 4.9% 5.9% 4.5% 4.2% 4.2% 4.2% 4.4% 4.5% 1.6% 5.9% 1.2% 0.23
Outline 1.8% 0.2% 1.1% 1.0% 0.4% 0.3% 1.3% 0.6% 0.6% 0.9% 0.8% 0.6% 0.2% 1.8% 0.5% 0.09
Trait 1.3% 0.3% 0.8% 0.2% 0.0% 0.7% 0.8% 0.4% 0.6% 0.7% 0.6% 0.6% 0.0% 1.3% 0.4% || 0.08
State Machine 1.5% 1.8% 1.0% 0.7% 0.3% 1.7% 1.7% 2.1% 1.8% 1.8% 1.4% 1.7% 0.3% 2.1% 0.6% 0.09
Pure Type 7.7% | 20.5% 6.7% 3.1% 2.5% 5.6% | 11.9% | 11.2% | 10.1% 10.6% 8.8% 7.7% 2.5% | 20.5% 5.5% 0.15
Augmented Type 0.6% 0.0% 0.3% 0.5% 0.0% 0.1% 0.2% 0.4% 1.0% 0.5% 0.4% 0.3% 0.0% 1.0% 0.3% 0.06
Pseudo Class 0.7% 1.6% 0.3% 0.0% 0.0% 0.3% 0.3% 0.2% 0.4% 0.4% 0.4% 0.3% 0.0% 1.6% 0.5% 0.06
Sampler 1.2% 3.5% 1.0% 0.0% 0.6% 1.7% 1.0% 0.5% 1.0% 1.0% 1.2% 1.0% 0.0% 3.5% 1.0% 0.10
Restricted Creation 2.3% 0.5% 1.0% 0.0% 0.4% 1.3% 1.5% 1.7% 0.7% 1.5% 1.0% 1.0% 0.0% 2.3% 0.7% 0.14
Coverage 79.5% | 79.4% | 64.3% | 48.0% | 83.7% | 67.3% | 76.9% | 76.2% | 65.7% || 74.9% | 71.2% | 76.2% | 48.0% | 83.7% | 11.1%
Entropy 5.27 4.32 4.27 3.32 4.51 4.22 4.74 4.96 4.83 5.08 4.50 4.51 3.32 5.27 0.56

Table 4: The prevalence, coverage, entropy and marginal entropy of micro patterns in the collections of the pruned corpus.

14,000

public class ParameterMode {
public static final ParameterMode
IN = new ParameterMode(“IN "),
INOUT = new ParameterMode(“INOUT"),

1

N

415
12,000 - :

%
-
7
-

10,000 - OUT = new ParameterMode(“OUT);
- pr?vate String mode; _
g private ParameterMode(String mode) {
o this .mode = mode; }
2 6,000 1 n N == public String toString() {
/' ' ’//’Z return mode; }
2

a000 / /I . }
- o

s
_ / é Interestingly, there is nothing else in all these classes (except for
A an array of the samples, in the case that the number of samples is
2,000 + i % 7 .,/i large.)
7] 558 : . .
0 é ZZL—W 89 18 There are 30 classes which mattiner, Pure Type, Stateless
0- - < i " and Sink but no other patterns. Here is one of them for example.
0 1 2 3 4 5 6

No. Patterns . .
package org.freehep.swing.graphics;
Figure 3: Multiplicity of pattern classification in the classes of])
the pruned corpus. public abstract class _ AbstractPanelArtist
implements PanelArtist,
GraphicalSelectionListener
]] public AbstractPanelArtist() {}
classes which matched more than three patterns: 558 classes wi
four patterns, 89 with five patterns. There were even 18 classesgain, all 30 classes are very similar in structure. Tjodytogether
which matched six patterns!) _ several empty classes or interfaces, thus helping in enriching the
_Itis interesting to examine some of the classes with multiple clas- ¢|assification hierarchy. In the process, they add a single empty
sifications. There were 12 classes which matched the same six panethod.
terns:Canopy, Restricted Creation, Overrider, Sink, Function Object, The examples we checked indicated that a multiple patterns match
and Data Manager. All of these classes are exceedingly similar: s very precise, yet very narrow. We can think of each pattern com-
they all have a series of pre made instances represenfrbbs bination as anew pattern which is more focused than any of its
static fields, aprivate constructor which accepts the name of components.
the created instance (passed &ring), aprivate variable to We analyzed the classes where multiple patterns were detected,
store that name, andtaString() method that returns the name and found out that there are more than 600 different combinations of
of that instance. Here is one of these for example. multiple patterns (when a combination is a set of patterns detected

) in a single class). While this number merely provides some vague
package javax.xml.rpc;

intuition to the power of the catalog, the entropy measurement canprove that random fluctuations of prevalence are improbable to gen-
formally describe the catalog’s separation power, or: the amount oferate differences of this magnitude. Thus, we will infer that there
information that the catalog provides on average. Examining theexists a non-random mechanism which governs the extent by which
last row of Tab. 4, we learn that the entropy fluctuates between 4.2&atterns are used in different collection.
and 5.27. By raising these values to the power of two, we obtain, The statistical validation of Conc. 7.6 can be taken as supporting
evidence to our claim thahe patterns in the catalog are purpose-
CoNcLUSION 7.4. The separation power of the catalog is equiv- ful. One such purpose could be that different software collections
alent to that of a partitioning into 19-39 equal and disjoint sets. serve different needs, and therefore employ different patterns at dif-
ferent levels. Yet another explanation of this non-random process is
Marginal Entropy. The last column of Tab. 4 gives the mar- the difference in programming style and practice between different
ginal entropy of each of the micro patterns with respect to the entirevendors and their various software teams. We shall discuss these
catalog and all classes in the pruned corpus. In other words, thigossible explanations in greater detail in the following section.
column specifies the “additional separation power” or added infor- Statistical Inference. The statistical inference starts by making
mation, when classes which were already matched by the rest of th@ null hypothesisH,, by whichpatterns are a random property of

catalog are matched against this micro pattern. ~_Java code According to this hypothesis, each pattern has some
We see that the marginal entropy of none of the patterns is O.fixed (yet unknown) probability of occurring in the code, regardless
Therefore, we can state: of context or programming style. The number of occurrences of a

certain pattern in a collection of classes is therefore the sum of
CONCLUSION 7.5. All patterns contribute to the separation powefihe , independent random binary variables, one for each class in
of the catalog. the collection. The binary variable of a class is 1 precisely when
o) .. the pattern occurs in that class. If the null hypothesis is true, then
In examining the last column we also find that patterns with high ¢anges in prevalence of the pattern across different collections are
prevalence usually exhibit higher marginal entropy, and vice versa,q, e to normal fluctuations of the-sum.
patterns with low prevalence tend to have low marginal entropy. oy gbjective here is teejectthe null hypothesis. As usual in sta-
Maximal marginal entropy is achieved I8ink; Implementor fol- tistical inference, we assurfi& and check the probability that such
lows. In other_words, we may argue trgihk qor_1tn_bute§ the most changes occur under this assumption. More specificallfiigp)
to the separation power qf thg catalog. This is in spite of the fact genote the null hypothesis for a pattesnFor each patterp, we
that there are patterns with higher prevalence. In a seiskes examine the values found in the corresponding row of Tab. 4, i.e,
more “independent” of the rest of the catalog than other patterns. he prevalence level of this pattern in the different collections, and
The sum of marginal entropies is 5.02, while the entropy of the -hack whether the variety in these can be explaineti(bfp).
entire catalog stands at a slightly higher, 5.06. This finding is the = g, example, the prevalence of the rarest pattBesignator, is
basis of our claim that the information brought by the catalog is gistributed as followst.0% in two of the collections().1% in two
greater than the sum of its parts. collections,0.2% in three collections, an.3% in the three re-
Variety in Prevalence. Following the table body, there are six maining collections. Are these rather tiny differences which occur
columns that give various statistics on the distribution of preva- in such minuscule prevalence values, meaningful at all?
lence of each pattern in the different collections. The first of these A precise answer to this question is given by the application of
columns gives the prevalence of each pattern in the entire (prunedjhe standardy?-test® to this row. This test checks whether ran-
corpus, i.e., a weighted average of the preceding columns. The tw@jom fluctuations in prevalence values can give rise, with reasonable
following columns give the (straight) average and median preva-probability, to these differences.
lence. Note that in the majority of micro patterns, these three typical Perhaps surprisingly, the test shows that null hypothesis is re-
values are close to each other. (This situation is typical to symmet-jected with confidence level of more th@9%, i.e.,a < 0.01.
rical and normal distributions.) (More precisely, the confidence level witkesignator 99.75%.) In
The next three columns are indicative of the variety in prevalence,other words, the probability that the changes in the prevalence level
giving its minimal and maximal values, as well as the standard de-of Designator can be explained bio(p) is less thard).01.
viation. Examining these, we can make the following qualitative |n applying the test to each of the patterns we find that hypoth-
conclusion: esisHo(p) is rejected with confidence level 80.9%, i.e.,a <
0.001 for all the patterns in the collection, with only two excep-
ConcLusioN 7.6. There is a large variety in the prevalence of tions: Designator, for which the confidence level 89.75%, and
patterns in different collections. Cobol Like, in which the confidence level is 96%.
. . At the usual95% confidence level employed in statistical infer-
For exampleFunction Object occurs in 24.1% of all classes in - gnce, the differences in prevalence levelbol Like are statisti-
JEdit (probably since it is used to realize tl®MMAND pattemn ¢y significant. It is tempting to declare tha (p) is rejected for

in this graphic environment), but only in 0.8% of the classes in the 4, p. We shall however use a fixed confidence leved@fs, i.e.,
Scala compiler. On the other hand, 20.5%®fala classes match gecjare that the null hypothesis is rejected only it 0.01. The

the Pure Type pattern, while the prevalence of this patterrldit following argument explains why.
is only 2.5%. InJEdit, 37.1% of all classes are instancesrofle-
mentor, while only 10.5% ofScala classes matchmplementor. However, even if the null hypothesis is true, iepected

that in about 5% of all cases, t% of this confidence

. level will be reached. Since we used a battery of 27 tests for
8. Prevalence Differences and Purposefulness all Ho(p), the expected number of times in which this confi-

The previous section ended with Conc. 7.6 making the qualitative dence level is reached, is greater than 1.
statement that differences between prevalence levels are “large”. In
this section, we will make this statement more precise by showing
that these differences amtatistically significant Concretely, we **Read “Chi-squared-test”.

100% W Pruned Data Set

CoNcLUsION 8.1. With the exception ofobol Like, changes DIRE Implementaions
in prevalence of each of the micro patterns in the collections of the
pruned corpus are significant. o 70%

3 60%

Pair-wise Separation. The above conclusion does not providéso%
means ofunderstandinghe nature of the changes. It merely says«»
that these changes as a whole are (statistically) significant. Furthets
more, the rejection of{o(p) does not mean thavery change in **
prevalence level of each pattern in any two collectimsignifi-
cant.

Conc. 8.1 only says thatot all changes in the collections are
a matter of coincidence. Despite the great variety, some patterns
exhibit the same prevalence level in different collections. For ex-
ample, the prevalence @tate Machine in Tomcat and Poseidon
is almost the same (round7%); its (rounded) prevalence Bcala
andShared is 1.8%. Is each of these differences significant?

Let Ho[c1, c2](p) be the null hypothesis that the prevalence of
a patternp in collectionsc; and ¢z is the same. To check this

. s . .
hypothesis, we apply & -test to determine Whether the differ- Conclusions Conc. 8.1 and Conc. 8.2 together are the statistically
ence in proportions (i.e., a “single degree freedom’xfatest) in 4 g counterpart of the qualitative statement in Conc. 7.6.

the two collections is significant. The test result is that hypothe-

sis’Ho[Tomcat, Poseidon])(State Machine) cannot be rejected by
the test. The test similarly fails to reject the hypothesis

0%

seuop
100d

piooay

ssajells
aigeInwwy

xog

19PLIBAD

Jepualg

suipno

PINOW

adAL aind

Jeidures

Auis

uoead paloLIsey

Joreubisaq
Awouoxe]
Jabeuep ereq
JeIu10d uonouN-
199lq0
241710900
arISOUON
xog a|qeInuwwy
xog punodwod
J0juewalduw
suyoe a1eIS
adAL paiuawbny
sse|o opnesd

Figure 4: The separation index of the patterns with respect
to the pruned corpus and the different implementations of the
JRE (o < 0.01).

9. Intermediate Discussion
The previous section established the significance of the variety

Ho[Scala, Shared](State Machine). in prevalence level of the same pattern in different collections. In
We say that patterp separateshe collections:; andc if this section, we shall discuss several ways of interpreting this sig-
nificance.
Holea, c2)](p) We first note that the corpus size makes it possible to establish

is rejected. The application ofg-test gives us an effective means the significance of even relativel_y emall differences in prevalence
for concentrating only on the significant differences in prevalence levels. But, the nature of the statistical tests we employ is that they
levels. take an appropriate account of both the corpus size but also of the

Corpus Separation Index. Let us now define a metric of the expected prevalence. Even with large data sets, not every difference
average extent by which a pattern distinguishes between different” prevalence level is significant:

collections. e Consider the difference in prevalence level of an individual
pattern between two specific collections. Fig. 4 shows that

DEFINITION 5. Assume some fixed confidence level. A& ; I
in only about half of the cases there was significance to the

a software corpus. Let be a pattern. Then, the notatidfi(p, C)

(or for short justY (p) whenC is clear from context), stands for the difference.

separation index gb (with respect tcC_) is the fr_action of rejected o As mentioned in Sec. 6 we tried to expand the corpus with
null hypotheseg{o[c1, c2](p) (at the fixed confidence level) out of three other ports of Sun’s implementation of the JRE, due to
all such hypotheses where andc; vary overc, e # cz. IBM, HP, and BEA. As it turned out, the differences in preva-

The separation index becomes useful becausgHest is sensi- lence level of these ports were not statistically significant.

tive to outliers: Suppose that the prevalence of a pajtémra single We can think of at least five different phenomena which can ex-
collectionc € C is distant from_ the average prevalence, while the plain, alone or together, the findings of Sec. 8
prevalence in the other collectionsd@nis very close to the average
prevalence. Then, the test will reject the null hypothégigp). In 1. Requirement Varietyl he different collections serve different
contrastHo[c1, c2](p) will be rejected only ife; = cores = c. needs, which call for different patterns.

Low separation index of a pattern indicates that the pattern preva-

lence is more stable in different collections. 2. Style Variety. The different collections are implemented by

Fig. 4 shows the separation index of the patterns in the catalog ~ different vendors employing different programming policies,
with respect to the pruned corpus (black columns) and the JRE cor- Styles, and individuals, all reflected by patterns prevalence.
pus (white columns). 3. Replication.We know that programmers tend, or are at least

Not surprisingly, the minimal value is that abbol Like, which

separates onlg out of the36 pairs of the pruned corpiruned encouraged, to reuse both design and code. Programmers

may copy classes, changing only a few lines of codes, instead
T (Cobol Like, Pruned) = 5.6%. of factoring out similaritie¥'. If this happens often, the num-
ber of “independent” classes in a collection is smaller than the
actual number of classes. A random fluctuation in a pattern
prevalence is amplified by this replication, and interpreted to
be significant even if it is not so.

It is followed by Y (Designator) = 8.33%. The highest separation
index,89%, is achieved byrunction Object, where the second high-
est value isY'(Overrider) = 86%. The median is 44%, while the
average separation index48%.

)) n some cases, code duplication cannot be avoided due to the ab-
CoNcLusioN 8.2. The difference in prevalence levels between sence of advanced abstraction mechanisms, (such as multiple inher-
two collections is significant in one out of two cases. itance, mixins, anonymous functions, and traits) in the language.

4. Population Contaminatio@ur experiments cannot tell a dif-
ference in prevalence level is a result of a moderate global

10.1 Prevalence in JRE Implementations
Tab. 5 is structured similarly to Tab. 4 except that in Tab. 5 we

change to the entire population, or of an accentuated changgompare the micro pattern prevalence in the seven implementations

to a subpopulation.

To understand this better, let us assume Gw@hmon State
occurs naturally inJava code with probability of 7%. Then,
if we take a set ofi0, 000 classes, about00 of these will
be aCommon State. Finding instead’67 classes, is, so tells
us they?-test, statistically significant. What the test fails to

of the JRE, i.e., in the corpus defined by

JRE = {Kaffe'!, Kaffe"** sun™!, Sun*?,

Sunl.?»’ Sunl.é‘v.l’ Sun1.4.2}

Comparing the two tables we see that the values in the average,

say is whether the increase in the number of occurrences igotal, and median lines in Tab. 5 are close, just as they are in Tab. 4.

a result an increased global tendency to @ssmmon State,

In comparing the standard deviation columr) {n the two ta-

or of (say) having a sup-population of 350 classes, whosebles, we see that the variety in coverage level and entropy is much

specific domain is such that the prevalenc€ofimon State
is 26%.

smaller in the related collections (Tab. 5) than the variety in the re-
lated collections (Tab. 4). For the majority of patterns (18 out of

the 27), the variety in prevalence level in Tab. 5 is smaller than the

5. Dormant Abstraction. It could be the case that the micro-
patterns found here are a reflection of higher legtekppat-
terns which are still not known to us. The difference in preva-
lence of micro patterns could be a reflection of difference in
prevalence of the “deep patterns”, which capture the “true”
differences between collections.

We would like to attribute changes in the use of patterns primar-
ily to requirement variety, and only then to style variety. But, these
changes could be a result of code replication, or population conta-
mination. These two explanations represent in fact the two faces of
the same phenomena, i.e., that different classes are not independent
of each other. Finally, dormant abstraction may mean that we are
examining the wrong patterns.

Statistical inference cannot positivetpnfirm any of these ex-
planations. It can however, be employed for the rejection of one or
more such conjectures, and for estimating the relative contribution
of the factors which are not rejected. Such an investigations requires
carefully designed experiments, and lies out of scope of this work.

In an initial experimentation with a bunch of “pseudo-patterns”,

variety in Tab. 5.

The variety of four patterns is about the same in both corpora.
Only five patternsPesignator, Taxonomy, State Machine,
Immutable and Sink showed a greater variety in the JRE-
collections than in the unrelated collections.

Examining these patterns, we see that there was a large drop
in their prevalence level with the progress of JRE implemen-
tations.

The drop inmmutable is explained by a change in the root of
the exceptions hierarchy of JREhrowable , which broke

the immutability of all of the classes in it.

The drop inDesignator, Taxonomy, State Machine and
Sink, is not so much in relative numbers but rather due to
the fact that the development of new branches of the standard
library did not make much new use of these patterns. In par-
ticular, the introduction of the fairly large and complex Swing
library in Sun?-2, has induced a corresponding decrease in the
ratio of Sink classes.

which are not expected to carry any purpose, we made some intetVe can therefore make the following qualitative conclusion:

esting discoveries.

CoNcCLUSION 10.1. Pattern prevalence tends to be the same in

o Pseudo-patterns computed by hashing the class pool into &oftware collections which serve similar purposes, independent of
single bit showed, at times, significance, although not as stronghe size of the collection.

as we found for micro patterns. This finding indicates that the

extent of code replication in the corpus is small, but probably Note that the two most largest differences are 19%mislemen-

measurable.

tor, betweenSun! and Sun'?, and an 11% drop inmmutable

o . betweerSun®? andSun'“*. The first difference can be attributed
e The statistical tests can trace in the corpus more than de+g the introduction of large interface-based librarie§im*?2 (such

sign information. For example, the use of a code obfuscator 55 theSwinglibrary and thesun.java2d.

* packages). The lat-

in parts ofPoseidon, generated short named classes, which ter gifference is, as explained above, due to the change of class

made significant changes to the prevalence of a “non-sense™rprowable

in Sun**1.

pattern occurring whenever the length of the class name is 1o appreciate the greater similarity in prevalence values, we can
a prime number. The dormant abstraction of naming con- recheck the null hypothesi&o[p]. This time with respect to the
vention could be detected by significant changes to the same:g|jections in the)RE corpus. As it turns out, the hypothesis cannot

“pattern”.

e We were able to find dormant abstraction, of (so we guess)
our patterns, in examining classes with exactly one method
and no instance fields. In other meaningless patterns, e.g.
requiring that a class has precisely two methods and two in-
stance fields, significance was found.

10. The Evolution of Software Collections

be rejected as often as in the pruned corpus. The difference in the
prevalence levels afobol Like were insignificant here just as in the
pruned corpus, but there were five additional patterns for which the
'differences in prevalence levels not significabttline, Augmented

‘Type, Pseudo Class, Pool, Stateless, andRecord.

10.2 Proximity of JRE Implementations

The finding thatH, [p] is rejected less often with JRE implemen-
tations, supports the qualitative statement in Conc. 10.1. But, in

We now turn to the quest of checking the persistence of micro order to make the conclusion more precise, we need a sound statisti-
patterns across different implementations of the same design, andal method of comparing the variation in pattern prevalence among
in the course of the software life cycle. To this end we consider thethe related collections, i.e., corpdRE, comprising the different
seven different implementations of the JRE as discussed in Sec. 6.implementations of the JRE, and unrelated collections, i.e., corpus

Collection

2| 8| ¢ £ g ¢| ¢ & Z| 5| 5| §| °

AR iR B K & 5 - o g o > 3

IS Q@ %

Designator 1.3% 0.8% 0.8% 0.4% 0.4% 0.3% 0.2% 0.4% 0.6% 0.4% 0.2% 1.3% | 0.4%
Taxonomy 11.0% 5.6% | 13.8% 6.7% 5.8% 5.1% 4.4% 5.9% 7.5% 5.8% 4.4% | 13.8% | 3.5%
Joiner 0.4% 0.3% 0.0% 0.8% 0.9% 1.2% 0.7% 0.8% 0.6% 0.7% 0.0% 1.2% | 0.4%
Pool 1.9% 1.9% 1.4% 1.6% 1.8% 2.3% 1.9% 1.9% 1.8% 1.9% 1.4% 2.3% | 0.3%
Sink 21.9% | 27.5% | 23.5% | 17.0% | 17-6% | 17.3% | 20.6% || 19.4% | 20.8% | 20.6% | 17.0% | 27.5% | 3.9%
Record 0.2% 0.2% 0.5% 0.5% 0.6% 0.6% 0.4% 0.5% 0.4% 0.5% 0.2% 0.6% | 0.2%
Data Manager 2.7% 2.8% 2.3% 1.5% 1.9% 1.9% 1.8% 1.9% 2.1% 1.9% 1.5% 2.8% | 0.5%
Function Pointer 1.0% 1.1% 0.5% 2.1% 1.2% 1.7% 2.0% 1.6% 1.4% 1.2% 0.5% 2.1% | 0.6%
Function Object 1.1% 1.2% 1.8% 8.0% 7.7% 6.9% 7.7% 6.5% 4.9% 6.9% 1.1% 8.0% | 3.3%
Cobol Like 0.9% 0.6% 0.5% 0.4% 0.4% 0.4% 0.4% 0.4% 0.5% 0.4% 0.4% 0.9% | 0.2%
Stateless 9.0% 8.9% 7.0% 9.3% 8.6% 9.5% 9.8% 9.2% 8.9% 9.0% 7.0% 9.8% | 0.9%
Common State 2.0% 1.3% 1.9% 1.4% 2.8% 3.6% 2.4% 2.5% 2.2% 2.0% 1.3% 3.6% | 0.8%
Canopy 5.1% 4.8% 2.9% | 10.2% 9.1% 9.1% 9.8% 8.7% 7.3% 9.1% 2.9% | 10.2% | 2.9%
Immutable 13.3% 5.1% | 15.1% | 17.6% | 16.7% 6.8% 7.6% || 10.7% | 11.7% | 13.3% 5.1% | 17.6% | 5.2%
Box 8.0% 1% 7% 15% 1.6% 5.3% 1.6% 4.9% 5.1% 1.6% 1% 8.0% | 1.3%
Compound Box 7.0% 6.0% 8.4% 5.4% 5.5% 5.7% 6.0% 5.9% 6.3% 6.0% 5.4% 8.4% | 1.1%
Tmplementor 9.7% | 17.0% 9.3% | 27.6% | 27.1% | 21.5% | 26.0% || 23.2% | 19.7% | 21.5% 9.3% | 27.6% | 7.9%
Overrider 6.6% 5.7% 7.7% 9.8% 9.2% | 12.3% | 12.4% || 10.5% 9.1% 9.2% 5.7% | 12.4% | 2.6%
Extender 6.5% 4.9% 4.5% 4.1% 4.1% 4.1% 4.3% 4.3% 4.6% 4.3% 4.1% 6.5% | 0.9%
Outline 1.9% 2.8% 2.3% T.7% 1T.7% 1.8% 1.8% 1.9% 2.0% 1.8% T.7% 2.8% | 0.4%
Trait 1.6% 2.3% 1.4% 1.9% 1.9% 1.3% 1.3% 1.6% 1.7% 1.6% 1.3% 2.3% | 0.4%
State Machine 1.6% 3.1% 2.5% 1.3% 1.4% 1.8% 1.5% 1.7% 1.9% 1.6% 1.3% 3.1% | 0.7%
Pure Type 10.1% | 14.9% | 12.4% 8.4% 8.7% 9.5% 7.7% 9.3% | 10.2% 9.5% 7.7% | 14.9% | 2.6%
Augmented Type 0.9% 1.3% 1.0% 0.6% 0.7% 0.7% 0.6% 0.7% 0.8% 0.7% 0.6% 1.3% | 0.3%
Pseudo Class 1.1% 1.2% 0.5% 1.1% 1.0% 0.8% 0.7% 0.9% 0.9% 1.0% 0.5% 1.2% | 0.3%
Sampler 25% 1.2% 1.6% 1.3% 1.2% 1T.1% 1.2% 1.3% 1.5% 1.2% 1T.1% 25% | 0.5%
Restricted Creation 2.0% 2.5% 1.3% 1.2% 1.8% 2.2% 2.3% 2.0% 1.9% 2.0% 1.2% 2.5% | 0.5%
Coverage 74.8% | 82.9% | 73.3% | 79.5% | 80.3% | 79.5% | 79.5% || 79.5% | 78.5% | 79.5% | 73.3% | 82.9% | 3.3%
Entropy 4.98 5.08 4.68 5.17 5.25 5.25 5.27 5.34 5.10 5.17 4.68 5.27 | 0.21

Table 5: The prevalence, coverage and entropy of micro patterns in different implementations of the JRE.

Pruned. To this end, we shall use tiseparation indexf a pattern CoNcLUsION 10.2. With high confidence value, micro patterns

(Def. 5). tend to have more similar prevalence values in different implemen-
We expect that patterns will distinguish between more pairs of tations of the JRE than the pruned corpus.

collections in the unrelated applications. Conversely, since we be- . .

lieve that the collections idRE are relatively similar to each other, 10.3 Progressive JRE Implementations

we expect a lesser ability of patterns to distinguish between these \We can employ the same statistical test to check whether pat-

collections. terns tend to exhibit greater similarity in their prevalence levels in
Fig. 4 helps in visualizing the meaning of this expectation. The progress versions of the JRE, than in less related versions. To this

black columns in the figure, represent the separation indices of theend we used a smaller corp8&N, comprising the four last ver-

patterns with respect to the pruned corpus, while the white columnssjons of Sun’s JRE implementations, i.e.,

represent the separation indices of the same patterns with respect to 12 13 141 142

the JRE implementations. The question is therefofge‘the black SUN = {Sun™“, Sun™~, Sun™"", Sun~"“},

columns significantly taller than the white columhs? and compared the separation indices with respect to it, with the sep-
We know that the average separation index with respect to theg,ation indices with respect to the entire corpusRES .

pruned corpus ig7%, while the average with respect to the JRE'’s

is 33%. But we cannot tell whether this differencelof% is signif-

icant without determining the distribution of the separation index. T (p, SUN) < Y (p, JRE). (4)
Let Hy[Pruned, JRE] be the null hypothesis that the patterns

have the same ability to distinguish between collections in both cor-

pora. Then, under this assumption, the separation index will hav

the same (unknown) distribution in both sets, and the event

At it turns out, there were 20 patterpsn which

By checking the same binomial distribution as before, we obtain
that hypothesig,[SUN, JRE] is rejected at the 99% confidence
Sevel.

We can thus strengthen Conc. 10.2 by the following.

Y (p, Pruned) < Y (p,JRE) 2))) .
CoNcLusioN 10.3. With high confidence level, progressive ver-
will be just as likely as the event sions of the JRE, tend to exhibit more similar pattern prevalence
levels than the entire range of implementations of the JRE.
Y (p, Pruned) > Y (p,JRE). ?3)
Itis even possible to use the patterns catalog to examine the prox-
imity of individual JRE implementations. To do so, consider the
random variable representing the prevalence level of each of the
patterns. Tab. 6 presents the values-@fi, c2), the Pearson cor-
relation between the values of this variable in all pairsc. of
implementations of the JRE.

We therefore have tha{;[Pruned, JRE] implies thatn., the num-
ber of patterns in which (2) holds follows a binomial distribution
of 27 tosses of a balanced coin.

Doing the count in Fig. 4 we obtain. = 7. A standard (one-
sided) test of this distribution reveals that the hypothesis

Hp[Pruned, JRE] A gualitative inspection of the table reveals that all correlation
’ values are high. The smallest correlatior9 is between the first
is rejected at confidence leved%. and the last of Sun’s implementation of the JRE.

We therefore obtain the following statistically sound counterpart Examining the last row of the table, we see that the correlation of
of Conc. 10.1. Sun*#2 with prior editions is increasing with version number. By

- Kaffe® !Kaffe* “Sun’ *Sun’?Sun™ 3Sunt* 1sun’42 number of classes, mostly due to considerable functionality added
Ezgzl-l-“ égg 28(7) 83; 8;2 8;3 8;2 8;‘51' at each new version. Thatio of classes which use certain pat-
Sunl-l 097 085 100 073 074 072 069 terns is preserved. This means that #ueledfunctionality is im-
sunl? 0.75 0.76 0.73 1.00 1.00 093 094 plemented in a fashion which is similar to the existing functionality.
guzij . 8;2 8;2 8;‘21 (1)8(3) (1)82 2861 888 Independent Implementation of the Same Class.lt turns out
sﬂnu-z 074 085 069 094 095 099 100 also that the different implementations of the same class are not

necessarily with the same pattern. To measure the tendency of im-
plementing a specification with the same pattern, we considered for
each pair of implementations, the Pearson correlation between the
events of implementing a specific class with the same pattern in the
two implementations. A total 027 - 7 - 6/2 = 567 correlation
values were thus computed. (Except for the small number of excep-
app|y|ng the standard technique of Fisher’s transformation’ we Car{ions discussed belOW, all these values were Signiﬁcant at the 99.9%
even check whether these increases are statistically significant. ~ confidence level or higher.)

Table 6: The Pearson correlation between patterns prevalence
level of patterns in different implementations of the JRE; all
values are significant at thea: < 0.01 confidence level.

As it turns out, the increase from(Sun**2, Sun'?) = 0.69 As expected, there were no cases of negative correlation. More-
to 7(Sun**2, Sun*?) = 0.94 is significant, and so is the increase OVer, in 90% of all cases, the correlation was greater than 0.6; in
from r(Sun'*2, Sun®) = 0.95 to r(Sun**2, Sun'*1) = 0.99. 46% of the cases, it was greater than 0.9. Since the implementation

On the other hand, the difference betweéBun'*?, Sun'?) = was carried by two independent vendors, we can conclude.

0.94 andr(Sun**? Sun’?) = 0.95 is statistically insignificant. _ _
These findings strengthen Conc. 10.3. CoNcLusION 10.4. Independent implementations of the same

) N] specification have a strong tendency to use the same pattern.
10.4 Programming Style vs. Specification
Tab. 6 includes an interesting case which can be used to compare It should be stated however that in only 65 cases, the correlation
the contribution to the choice of micro pattern of programming style was 1ie, |t_wa§ the case th"?‘t a class used a specific |_oattern In one
with that of software specification. implementation if and only if it used the same pattern in the other
Consider collectionsSun'! andKaffe'* which represent two in-

implementation.
dependent implementations of almost identical specifications. We Of course, we do not know if all cases in which implementations
see a very high correlation value(Kaffe'*, Sun't) = 0.97, be-

of the same clasdid not chose the same patterns are a result of
tween the two collections consciousness design decision. These cases could also be an artifact
Let us now examine the correlation values-¢gun*?, Sun't)

of inaccuracies of our automatic pattern detection tool or of our
andr(Kaffe'*, Kaffe') which record similarity in pattern preva-

pattern definition.
lence in cases that the specification changed (mostly by expande

g 't may take a moment’s thought to be convinced that Conc. 10.1
functionality), but the programming style and Vendor culture pre- and €onc. 10.4 do not contradict Conc. 8.1. What we have in fact
sumably did not change so much. We have:

is the following observation:

r(Kaffe' Kaffe'*) = 0.87 < r(Kaffe'*, Sun'*) CONCLUSION 10.5. Although the prevalence level tends to be
12 11 11 11 (5) similar in similar implementations, the small changes in the preva-

r(Sun™*, Sun™) = 0.73 < r(Kaffe ™", Sun™) lence level between any two implementation of the JRE (across all

Moreover, in applying the Fisher transformation to the respective Patterns) are statistically significant.

values, we find that both inequalities in (5) are statically significant.

The finding in this test case suggests that micro pattern applicationl 1. Related Work

tends to be determined by the specification more than the program- Cohen and Gil [13] supplied some statistical evidence to the ex-

ming style. istence ofcommon programming practicevhich “good” program-

Comments. First, note that the conclusions in this section do mers will follow in their coding. Their conclusions were obtained
not mean that micro patterns are the only means, or even the mostom a set of simple metrics, such as: number of parameters of a
effective tool, for determining proximity of software collections. method, bytecode size of a method, number of static method calls,

We expect that many other metrics, including metrics derived etc. Given the somewhat “technical” nature of these metrics, the
from non-purposeful patterns (similar to the pseudo patterns mendeduction of meaningful conclusions regarding the design of a pro-
tioned in Sec. 9) will exhibit similar diStinguiShing Capab”ities. gram, from a given vector of metrics VaerS, is not an easy task.
What we have established is that micro patterns are not a random |n this paper, we took the natural challenge of bridging the gap:
property of code, and that its behavior in the course of changesinding micro patterns which are at a slightly higher level than e.g.,
in specification is in accordance with our natural understanding ofthe number of parameters to a method, but at a lower level than
these. design patterns.

Second, note that the single test case presented in Sec. 10.4 in- \/an Emde Boas [45] describes the trade off of expressivity (of
dicates that specification has more impact than style, but it cannothe language used for describing design patterns) vs. the complexity
prove such a point. It is difficult to run a controlled experiment of of the pattern detection problem. He showed that lack of syntactic
this sort. The costs of software development make the independengonstraints on the design pattern definitions, results in the detection
implementation of the same specification a true rarity. problem being undecidable.

Preservation of Prevalence Level. It is tempting to think that Kraemer and Prechelt [36] developed the Pat system which de-
conclusions 10.1-10.3 are a result of the fact that the same classdgcts structural design patter’SEAPTER, BRIDGE, COMPOSITE,
occur in all implementations collections. This is not true, since the DECORATOR PROXY) by inspecting a given set of C++ header files
numbers of classes in each such implementation is very different;(.h), and storing extracted data Bsolog facts. ldentification is
the series of Sun’s JRE version exhibits dramatic increase in thecarried out by invoking a Prolog query against a set of predefined

Prolog rules describing the identifiable design patterns. This sys- We described a catalog of micro patterns, which can be used as a
tem had a detection precision of 14 — 50%. As the authors claim,mental skeleton to mold mundane modules, allowing programmers
the precision can be significantly improved by checking method callto become more productive. For example, by using the catalog,
delegation information, which cannot be obtained from header files.much of the coding work is reduced to the mere issue of selecting

Our approach is expected to yield better results: a pattern for a class (often dictated by the system design), and then
. . . .)) laboriously filling in the missing details.
e The richer information available atlass file will allow We showed (Conc. 7.1) that an overwhelming majorityafa

our tools to inspect method call delegations, detect more types,|asses follows one or more of the patterns in the catalog. (The re-
of patterns, and reduce the number of false positives. maining classes either fit yet unknown patterns, or represent code
e We are not restricting our research to Gamma et al.s [22] Iocation'_s which required more skill than rputine.) We used sev-
design patterns. Any micro pattern is applicable. eral statistical methods toincrease the confldence_thgt thes_e patterns
capture sound ideas. For example, we gave statistical evidence to
Heuzeroth et al. [25] combine static and dynamic analysis for the claim that independent implementations of the same specifica-
detection of design patterns (Behavior@BSERVER MEDIATOR, tion tends to use the same pattern and that this choice is preserved
CHAIN OF RESPONSIBILITY, VISITOR; Structural: COMPOSITE in the course of software evolution (Conc. 10.4).
in JavA applications. The static analyzer applies various predicates Despite the fact that more than half the classes can be described
over the source codejgva files) to obtain a set of candidates. by one of the five leading patterns (Conc. 7.3), we found that each
The dynamic analyzer employs code instrumentation techniques t@f the patterns in the catalog contributes (Conc. 7.5) to the 4-5
trace the behavior of the candidates at runtime. A candidates whoseits or so of design information that the catalog as a whole reveals
behavior is not conforming with the expected behavior of the rele- (Conc. 7.4).
vant design pattern is filtered out. This technique’s dependency on After noticing (Conc. 7.6) that there is a considerable variety in
runtime information is a major drawback. the use of patterns in different domains, statistical analysis was car-
Brown [9] uses dynamic analysis &malltalkprograms for the ried out to understand better the nature of this variety. This analysis
detection of Gamma et al. patterns. His technique is based on trachas shown that in almost half of the cases, changes in a pattern's
ing of messages sent between objects. prevalence levels, between two software collections, were not an
The need for enhanced documentation tools has been stated bartifact of random fluctuation. This indicates that the choice of pat-
several works in the area of software visualization [19, 41, 42]. An- terns is not merely a follow up of the language constraints and that
other similar research is the work of Lanza and Ducasse [26], whichit is effective for distinguishing programming context.
suggest a technique for classifying method$ofalltalkclasses to We are currently engaged in devising a specification language,
one of five categories by inspecting their implementation. These auwhich based on FOPL, will make it possible to concisely and pre-
thors’ classification algorithm is partially based on common naming cisely define patterns. Within this langauge framework, it is inter-
conventions. esting to add weights to part of the definitions, which will make it
Micro patterns are related also to a number of systems whichpossible to measure the proximity of a class to a pattern. Weights
allowed the programmer to add auxiliary, automatically checkable should also make it possible to build systems which not only dis-
rules to code. Examples include Minskylsw Governed Regu- cover the use of micro patterns, but also help the user correct his
larities [32, 33], or Aldrich, Kostadinov and Chambers’s work on software—by offering concrete recommendations of how to make
alias annotation [2]. Micro patterns are different in that they restrict certain classes a better match to the acquired knowledge base.
the programmer’s freedom in choosing such rules (unless the user With the development of automatic tools for tracing patterns, and
comes with a new pattern), but on the other hand give a set of sim-the evidence of their significance, it is possible and interesting to ex-
ple, pre-made, well defined rules backed up by extensive empiricalpand the notion of micro patterns by studying kinds of interactions
support. between classes obeying various micro patterns and even develop-
Statistical inference in the context of software was used in theing patterns to specify sorts of such interaction. A typical question
past. For example, Soloway, Bonar, and Ehrlich [40], employed of this sort is whether base class category is indeed used more as in-
the x2-test to answer questions such as the extent by which ad-heritance basis. Such a research direction may even mature to tools
vanced programmers have greater tendency to use certain progranmaking more global advice. For example, in a hierarchy where a
ming idioms, and the extent by which language support for the pre-Pure Type class is subclassed by severablementor classes, the

ferred idioms promotes program correctness. root class can possibly be turned intarait or anOutline class, thus
capturing some of the similarities of its subclasses.
12. Discussion and Further Research On the other hand, we expect that nano-patterns, i.e., patterns of

People use patterns without thinking. This phenomenon is a con methods can be defined and traced in the code, and that the com-

L e L bination of micro patterns and nano-patterns will be a better aid to
sequence of the recognition built into every one of us, liwatineis . ; :
: : : sign, documentation and software comprehension.
easier and safer than the time consuming and error-prone process . o S .
S : . . Also interesting is the subjective value of patterns, i.e., the mea-
decision making As demonstrated so many times in the past, pat- . . o
. f . " surable extent by which they improve (or degrade) practitioners pro-
terns exist also in the programming world. In languages with rich L
; o . ductivity and sense of empowerment.
system of attributes such dava it is clear there are many (statis- : X L .
. i . Finally, perhaps the most challenging work is in discovering con-
tical) correlations between these attributes. For example, we expec(t:re,[e connections between micro patterns and software qualit
classes which define static fields to define static methods, etc. p q Y

. : : AcknowledgementsThe authors pay tribute to Kent Beck for his wise
Micro patterns step further beyond the simple conclusion thatcomments which greatly helped shaping this paper. The meticulous read-

there are many lnter-correlatlons be_tween the setting of (say) at'|ng and the comments of the anonymous reviewers of the OOPSLA 2005

tributes and selection of types. In this paper we showed, probablyprogram Committee are happily acknowledged. In particular, we thank the

for the first time, that there are distinct patterns which the major- referees for bringing us to the observation that statistical significance can be

ity of Java software follows. In fact, we gave meaning, name and employed to better understand a dormant purpose.

significance to many of these correlations. Special thanks go to James Noble, for his deep and inspiring input. The
use of the term software corpus also follows his suggestions.

13.

(1]

(2]

8

[9

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

E. Agerbo and A. Cornils. How to preserve the benefits of design patterns. In
Proc. of the 18 Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLAg8jes 134-143,
Vancouver, British Columbia, Oct.18-22 1998. ACM SIGPLAN Notices.

J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for program
understanding. IProc. of the 1% Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSL/Ae2jtle,
Washington, Nov. 4-8 2002. ACM SIGPLAN Notices.

P. Arnold and J. Goslingrhe Java Programming Languagehe Java Series.
Addison-Wesley, 1996.

K. Beck. Smalltalk: best practice patternBrentice-Hall, I edition, 1997.

K. Beck.JUnit Pocket GuideO’Reilly, 2004.

A. Blewitt, A. Bundy, and I. Stark. Automatic verification of Java design
patterns. IrProc. of the 18 IEEE Conference on Automated Software
Engineering (ASE’01)pages 324-327, San Diego, California, 2001. IEEE
Comp.

J. Bloch.Effective Java Programming Language Guideldison-Wesley, ¥
edition, June 2001.

G. Bracha and W. R. Cook. Mixin-based inheritancePtoceedings of the
Conference on Object-Oriented Programming: Systems, Languages, and
Applications / Proceedings of the European Conference on Object-Oriented
Programming (OOPSLA/ECOOP’9®ages 303-311, Ottawa, Canada, Oct.
21-251990. ACM SIGPLAN Notices.

K. Brown. Design Reverse-Engineering and Automated Design Pattern
Detection in SmalltalkMasters thesis, North Carolina State University, 1996.
M. Campione, K. Walrath, and A. HuniThe Java Tutorial: A Short Course on
the BasicsAddison-Wesley, 2000.

D. N. Card and R. L. Glas$/easuring software design qualitiyrentice-Hall,
1990.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Trans. Softw. Eng20(6):476—493, June 1994.

T. Cohen and J. Gil. Self-calibration of metrics of Java methodBrde. of the
37" International Conference on Technology of Object-Oriented Languages
and Systems (TOOLS’00 Pacific Conferenpapes 94—-106, Sydney,
Australia, Nov. 20-23 2000. Prentice-Hall.

T. H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction to Algorithms

MIT Press, ¥ edition, June 1990.

B. Demsky and M. C. Rinard. Automatic detection and repair of errors in data
structures. IrProc. of the 18' Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLAsa8es
78-95, Anaheim, California, USA, Oct. 2003. ACM Press.

A. H. Eden. Formal specification of object-oriented desigrPioc. of the
International Conference on Multidisciplinary Design in Engineering
(CSME-MDE’'01) Montreal, Canada, Nov. 21-22 2001.

A. H. Eden. A visual formalism for object-oriented architecturePmc. of the
6"Integrated Design and Process Technology (IDPT;@lifornia, June

23-28 2002. Society for Design and Process Science.

A. H. Eden and R. Kazman. Architecture, design, implementatioRrde. of
the 28" International Conference on Software Engineering (ICSE’papes
149-159, Portland, Oregon, May 3-10 2003. IEEE Comp.

S. G. Eick, J. L. Steffen, and E. E. J. Sumner. Seesoft-a tool for visualizing line
oriented software statisticEEEE Trans. on Soft. Engl8(11):957-968, Nov.
1992.

G. Florijn, M. Meijers, and P. van Winsen. Tool support for object-oriented
patterns. IrProc. of the 1t European Conference on Object-Oriented
Programming (ECOOP’97)pages 472—495, Jaggkyh, Finland, June 9-13
1997. Springer.

E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. Design patterns:
Abstraction and reuse of object-oriented desigrPioc. of the 7 European
Conference on Object-Oriented Programming (ECOOP, @3)ges 406—431,
Kaiserslautern, Germany, July 26-30 1993. Springer.

E. Gamma, R. Helm, R. E. Johnson, and J. M. VlissifeEsign Patterns:
Elements of Reusable Object-Oriented SoftwBrefessional Computing
series. Addison-Wesley, 1995.

A. Goldberg.Smalltalk-80: The Interactive Programming Environment
Addison-Wesley, 1984.

M. Grand.Patterns in Java: A Catalog of Reusable Design Patterns lllustrated
with Uml,Volume 1Wiley, 2002.

[25]

[26

[30

(31]

[32]

[33

[34

[35

[36

[37]

[38

[39]

[40

[41

[42]

[43

[44]

D. Heuzeroth, T. Holl, G. Bstidm, and W. lbwe. Automatic design pattern
detection. InProc. of the 1¥International Workshop on Program
Comprehension (IWPC’03page 94, Portland, Oregon, USA, May 2003.
co-located with ICSE’03.

M. Lanza and S. Ducasse. A categorization of classes based on the
visualization of their internal structure: the class blueprinfPtac. of the 18
Annual Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA'O1lpages 300-311, Tampa Bay, Florida, Oct.
14-18 2001. ACM SIGPLAN Notices.

A. Lauder and S. Kent. Precise visual specification of design patter®som

of the 12" European Conference on Object-Oriented Programming
(ECOOP’98) Brussels, Belgium, July 20-24 1998. Springer.

M. Lorenz and J. KiddObject-Oriented Software Metrics: a practical guide
Prentice-Hall, 1994.

J. K. H. Mak, C. S. T. Choy, and D. P. K. Lun. Precise modeling of design
patterns in UML. InProc. of the 28 International Conference on Software
Engineering (ICSE'04)pages 252-261, Edinburgh, Scotland, United
Kingdom, May 23-28 2004. IEEE Computer Society.

B. Meyer.Object-Oriented Software Constructidnternational Series in
Computer Science. Prentice-Hall, 1988.

T. Mikkonen. Formalizing design patterns.noc. of the 28 International
Conference on Software Engineering (ICSE;98)ges 115-124, Kyoto, Japan,
Apr. 19-25 1998. IEEE Comp.

N. H. Minsky. Law-governed Linda communication model. Technical Report
LCSR-TR-221, Dept. of Comp. Sc.Lab. for Comp. Sc. ResearchThe State
Univ. of New Jersey RUTGERS, Mar. 1994.

N. H. Minsky. Towards alias-free pointers. Broc. of the 18 European
Conference on Object-Oriented Programming (ECOOP, @a)ges 189-209,
Linz, Austria, July 8-12 1996. Springer.

J. Noble and R. Biddle. Patterns as signsPtac. of the 18 European
Conference on Object-Oriented Programming (ECOOP,02laga, Spain,
June 10-14 2002. Springer.

M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud,

N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger. An overview of the Scala
programming language. Technical Report IC/2004/64, EPFL Lausanne,
Switzerland, 2004.

L. Prechelt and C. Kamer. Functionality versus practicality: Employing
existing tools for recovering structural design patteddCS: Journal of
Universal Computer Sciencé(12):866—882, 1998.

M. Reiser and N. WirthProgramming in Oberon: steps beyond Pascal and
Modula Addison-Wesley, June 1992.

N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units
of behavior. InProc. of the 1 European Conference on Object-Oriented
Programming (ECOOP’03)Darmstadt, Germany, July 21-25 2003. Springer.
J. M. Smith and D. Stotts. Elemental design patterns: A formal semantics for
composition of OO software architecture.Pnoc. of the 2% Annual NASA
Goddard Software Engineering Workshop (SEW,@2ges 183-190,
Greenbelt, Maryland, Digital Equipment Corporation 5-6 2002. IEEE Comp.
Soc. Press.

E. Soloway, J. Bonar, and K. Ehrlich. Cognitive strategies and looping
constructs: An empirical stud€ommun. ACM26(11):853-860, 1983.

J. T. Stasko. Tango: A framework and system for algorithm animation.
Computer23(9):27-39, 1990.

M. D. Storey and H. A. Niller. Manipulating and documenting software
structures using SHriMP views. Proc. of the 11" International Conference

on Software Maintenance (ICSM'95)age 275, Opio (Nice), France, Oct.
1995. IEEE Comp. Soc. Press.

B. StroustrupThe C++ Programming Languagéddison-Wesley, 4 edition,
1997.

S. T. Taft and R. A. Duff, editorsAda 95 Reference Manual, Language and
Standard Libraries, International Standard ISO/IEC 8652: 1995¢©)ume
1246 ofLNCS Springer, 1997.

P. E. van Emde Boas. Resistance is futile; formal linguistic observations on
design patterns. Technical Report ILLC-CT-1997-03, The Institute For Logic,
Language, and Computation (ILLC), University of Amsterdam, Feb. 1997.
N. Wirth. The programming language Pas@sdta Informatica 1:35-63, 1971.

1. H. Witten and E. FrankData mining: practical machine learning tools and
techniques with Java implementatioMorgan Kaufmann, 2000.

	IFT3051Rapport.pdf
	 Introduction.
	1. Les Micro Patterns.
	1.1. Qu’est-ce qu’un micro pattern?
	1.2. Définition des différentes catégories de micro patterns.
	1.2.1. Degenerate State and Behavior.
	1.2.2. Degenerate Behavior.
	1.2.3. Degenerate State.
	1.2.4. Controlled Creation.
	1.2.5. Wrappers.
	1.2.6. Data Managers.
	1.2.7. Base Classes.
	1.2.8. Inheritors.

	1.3. Quelques micro patterns.
	1.3.1. Box.
	1.3.2. Cobol like.
	1.3.3. Sink.
	1.3.4. Immutable.

	2. Travail effectué.
	2.1. Planification suivit.
	2.2. Compréhension des micro patterns et de Ptidej.
	2.3. Implémentation.
	2.3.1. Concept général.
	2.3.2. Problèmes rencontrés.
	I. Chaque classe ne fait pas partie d’un micro pattern unique.
	II. listOfInheritedActors n’est pas listOfImplementedActors!
	III. Un modèle identique?
	IV. Immuable, une définition imprécise…
	V. Les classes et interfaces héritées et ré implémentées.

	3. Analyse des Résultats.
	3.1. Résultats obtenues.
	3.2. Les différences.
	3.2.1. Le micro pattern Stateless.
	3.2.2. Le micro pattern Common State.

	4. Travaux futurs.
	5. Remerciements.
	 Conclusion.
	 Annexes.
	Micro Patterns in Java code

