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Introduction. 

Dans un contexte où la qualité des logiciels a de plus en plus d’importance, 
nous avons besoin de plus en plus de métriques. Comment évaluer la qualité d’une 
application ? Certes nous savons qu’un logiciel sous-spécifié, avec peu de classes est 
donc peu de modulaire et maintenable, est une application mal conçut. Mais nous 
savons également qu’il n’est pas bon d’avoir un logiciel sur-spécifié car la lourdeur du 
code le rend également impossible à maintenir. 

Alors comment évaluer cette qualité ? Joseph (Yossi) Gil et Itay Maman du 
Department of Computer Science de l’Israel Institute of Technology nous apporte 
quelques éléments de réponse : les micro patterns. 

Le principe en est simple : on peut se basé sur un certain nombre de logiciels 
que nous considérons comme bien conçues pour effectuer des comparaisons. Mais sur 
quelles bases effectuer ces comparaisons? Les micro patterns ne se bases pas au niveau 
de l’architecture même du logiciel, mais plutôt au niveau de chaque classe. Comment 
est conçue une classe, quel héritage fait-elle, comment ré implémente-t-elle les 
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méthodes et attributs dont elle hérite, etc… Nous détaillerons plus loin ces points de 
comparaison. 

Nos objectifs sont les suivants : nous familiariser avec les micro patterns, leur 
concepts et spécifications, implémenter leur détection sous Ptidej. Analyser un certain 
nombre d’applications déjà analysées par Joseph Gil et Itay Maman, et ainsi valider nos 
résultats par rapport aux leurs. 
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1. Les Micro Patterns. 

1.1. Qu’est-ce qu’un micro pattern? 
Les micro patterns sont similaire aux design patterns, mais ce situent à un 

niveau d’abstraction inférieur, on les retrouvent au niveau de l’implémentation même 
des classes. Ils se caractérisent par le fait qu’ils sont détectables automatiquement, d’où 
la possibilité d’implémenter leur détection sous Ptidej. 

Il existe un catalogue de 27 micro patterns, décliné en 8 sous ensembles. Les 
micro patterns sont avant tout détectable pour les logiciels programmés en Java, 
cependant leur utilité pourrait s’étendre à d’autres langages objets de niveau équivalent. 
Dans notre cas, nous nous limiterons à Java. 

Toute classe Java entre dans aucune, une ou plusieurs définitions d’un micro 
pattern. Par exemple une classe dont tous les attributs sont statiques fait partie du 
micro pattern « Common state ». Mais une telle classe peut aussi faire partie du micro 
pattern « Restricted creation » qui est définie comme une classe sans constructeur 
public, et qui a au moins un attribut du même type que la classe.  

Ainsi les micro patterns permettent de classifier toutes les classes d’un logiciel, 
de mesurer la redondance de chacun au sein même de l’application et de comparer ces 
taux à ceux obtenues sur des applications de référence comme les JRE de Sun, JEdit, 
Tomcat, ou encore Poseidon. Chaque application de référence est choisie pour sa 
bonne conception, ainsi il devient simple de voir et comparer les orientations et choix 
de conception fait pour un certain logiciel par rapport à une application bien conçue, 
en l’occurrence nos applications de référence. 

1.2. Définition des différentes catégories de micro 
patterns. 
Chacune des catégories que nous allons vous présentez représente une 

ensemble de micro patterns aux caractéristiques semblable. 
Voici un tableau récapitulatif des catégories et micro patterns qui les 

composent que nous allons vous détaillé : 
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1.2.1. Degenerate State and Behavior. 

Il s’agit de la plus simple des catégories, elle regroupe les classes dont l’état est 
extrêmement dégénéré. Nous considérons la dégénérescence, dans la plus part des cas, 
comme le fait qu’une classe ne définie aucune variables ou méthodes. 

Cependant, cela ne signifie pas que ces classes sont inutiles, en effet elles sont 
souvent utilisées pour définir et gérer des types. 

1.2.2. Degenerate Behavior. 

Cette catégorie réfère aux classes sans méthode, avec une seule méthode ou 
dont les méthodes sont très simples. 

1.2.3. Degenerate State. 

Une catégorie de classes qui n’ont aucun état, ou dont l’état est partagé par 
plusieurs classes, ou encore qui sont immuables. Une classe immuable ne voit ses 
attributs modifiés uniquement dans le constructeur. 

1.2.4. Controlled Creation. 

Classes dont les constructeurs font l’objet de protocoles de création 
spécifiques. Il s’agit de classes dont la création ne peut être effectuée directement par 
l’utilisateur, ou encore dont la création est déjà pré effectuée pour l’utilisateur. 

1.2.5. Wrappers. 

Les classes de type « Wrappers » encapsule un ou plusieurs attributs centraux 
qui restent accessible uniquement par leurs méthodes. Le micro pattern principal de 
cette classe est « Box ».  

1.2.6. Data Managers. 

Le rôle des classes Data Manager est de gérer un ensemble de données au sein 
des variables d’instances. 

1.2.7. Base Classes. 

La catégorie « Base Classes » regroupe un ensemble de cinq micro patterns 
dont le rôle est de préparer des caractéristiques pour ses sous classes. 
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1.2.8. Inheritors. 

Trois micro patterns sont regroupés dans cette catégorie, chacun représente 
une méthode différente pour l’implémentation des définitions d’une superclasse.  

L’implémentation de méthodes abstraite, la ré implémentation de méthodes 
déjà existantes, et l’enrichissement de la classe par de nouvelles méthodes. 

1.3. Quelques micro patterns. 
Le but de cette section n’est pas de détailler tous les micro patterns, mais de 

vous donnez un aperçu plus précis de ce qu’est un micro pattern. Si vous souhaitez 
connaitre le détail de chacun des différents micro patterns veuillez vous référez au 
document « Micro Patterns in Java Code » fournit en annexe. 

1.3.1. Box. 

Ce micro pattern fait partie de la catégorie Wrappers, il s’agit d’une classe avec 
exactement un champ d’instance modifiable par au moins une méthode statique ou 
non de la classe. La classe CRC32 du package java.util.crc est un bon exemple de ce 
micro pattern, sont état est entièrement représenté par le champ « int crc » modifiable 
uniquement par ses méthodes. 

1.3.2. Cobol like. 

Ce micro pattern fait partie de la catégorie « Degerate Behavior ». Il s’agit 
d’une classe avec une seule méthode statique, un ou plusieurs attributs statique, mais 
aucun attribut ou méthode d’instance. Les programmeurs débutant auront tendance à 
créer des classes principale de type « Cobol Like ». La prévalence de ce micro pattern 
est donc faible. 

1.3.3. Sink. 

La prévalence de cette classe est plutôt importante puisqu’on la retrouve en 
moyenne dans 13.1% des classes. Il s’agit d’une classe dont les méthodes n’appelle ni 
méthode d’instance, ni méthode statiques d’une autre classe. 

La classe JarEntry du package java.util.jar.JarEntry est un bon exemple de ce 
micro pattern. 
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1.3.4. Immutable. 

Ce micro pattern regroupe toutes les classes dont les attributs d’instance sont 
modifiés uniquement par le constructeur. Ce micro pattern est fréquemment retrouvé, 
puisque sa moyenne d’apparition est 6.1%. 

Un bon exemple pour ce micro pattern est la classe java.util.jar.Manifest qui a 
uniquement deux attributs, tout deux instanciés par le constructeur. 
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2. Travail effectué. 

2.1. Planification suivit. 
Semaine : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Compréhension 
des micro 
patterns. 

               

Compréhension 
de Ptidej. 

               

Implémentation.                
Affinage du 
code. 

               

Interprétation 
des résultats, 
production des 
documents. 

               

 

2.2. Compréhension des micro patterns et de Ptidej. 
La compréhension des micro patterns fût une phase importante de notre 

projet. En effet cette dernière allait conditionnée tout notre développement futur.  
Dans un premier temps il était bien sûr nécessaire de comprendre qu’est-ce 

qu’un micro pattern, mais aussi quels été les différents micro patterns.  
Une fois ces concepts maitrisés, il fallait comprendre comment implémenter 

leur détection automatique ce qui a nécessité une compréhension approfondit des 
éléments de Ptidej. Un des premiers problèmes rencontrés fut le manque 
d’information sur la technique de détection automatique des micro patterns. Plusieurs 
informations qui aurait été pertinentes pour l'implémentation, sont laissé en suspend. 
Ceci nous à forcé à faire quelques hypothèses en rapport avec la technique utilisée. 

Nous n’utilisons pas tous les éléments et module de Ptidej, mais nous devions 
connaitre le rôle de chacun afin de choisir ceux que nous allions réutiliser.  

Le premier élément, et certainement le plus important à maitriser fût le méta-
modèle PADL qui constitue le cœur même de l’analyse d’une application par Ptidej. 
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C’est sur cet élément que toutes nos détections devaient se baser, il nous a permis de 
nous concentré sur la détection des caractéristiques des micro patterns plutôt que sur 
l'analyse du code source java. Sa compréhension fût donc essentielle dans la suite de 
notre projet. 

2.3. Implémentation. 

2.3.1. Concept général. 

Nous avons ajouté un projet distinct à Ptidej, ce projet permet d’étendre ses 
fonctionnalités à la détection des micro patterns.  

Son fonctionnement général est le suivant : le patron de conception visiteur 
parcourt le modèle, et exécute les algorithmes de détection ses éléments. Nos 
algorithmes sont exécutés à chaque entrée dans une nouvelle classe ou interface. 

Notre algorithme fonctionne de la façon suivante : 
1. Chaque classe ou interface passe par la détection de chacun des micro 

patterns. 
2. Chaque détection d’un micro pattern est effectuée par une classe 

différente. Nous avons donc 27 classes permettant de détecter les 27 
micro patterns. 

3. Une fois tout le modèle parcouru nous obtenons une liste des classes 
appartenant à chacun des micro patterns. Nos calculs sont effectués à 
partir de ce résultat. 

Comme nous le précise l’article de Joseph Gil et Itay Maman, la détection des 
micro patterns est assez mécanique, il s’agit de vérifier si une classe ou une interface 
possède certaines caractéristiques. Donc chacun de nos algorithme de détection d’un 
micro pattern a en charge de vérifier ces caractéristiques, il s’agit donc de parcourir le 
modèle à la recherche des informations dont nous avons besoin. Par exemple : un 
attribut est-t-il statique, ou encore une méthode est-elle héritée, ou ré implémentée? 

En ce sens le modèle crée par PADL c’est avéré assez complet, peu 
d’informations furent manquantes. La seule modification nécessaire au méta-modèle 
fût l’ajout de la propriété « isFinal ». Cette propriété assure qu’un attribut est final, 
c'est-à-dire qu’il n’est jamais modifié après son initialisation. 
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2.3.2. Problèmes rencontrés. 

I. Chaque classe ne fait pas partie d’un micro pattern unique. 

Comme nous l’expliquions plus haut, l’un des problèmes majeurs dans 
l’évolution de notre projet fût la compréhension et l’interprétation des données de 
l’article. Nous nous en sommes aperçu à nos dépends, lors de l’analyse de nos 
premiers résultats les données que nous obtenions étaient bien éloignées de celles de 
Joseph Gil et Itay Maman. Dans un premier temps, notre interprétation de l’article 
était qu’une classe appartenait à un et un seul micro pattern. En réalité ce n’était pas le 
cas, chaque classe peut appartenir à aucun, un ou plusieurs micro patterns. Ce 
problème donna lieu à des modifications mineures du code. 

 
II. listOfInheritedActors n’est pas listOfImplementedActors! 

Encore une fois un problème de compréhension faussa nos résultats. 
Cependant cette fois il ne s’agissait pas d’un problème de compréhension de l’article, 
mais plutôt du modèle PADL. Dans le modèle chaque classe possède un attribut 
« listOfInheritedActors », cet attribut nous donne la liste de toutes les classes héritées. 
Nous pensions que cette liste comprenait les classes héritées, mais aussi les interfaces. 
Hors la liste des interfaces héritée ce trouvé dans l’attribut 
« listOfImplementedActors », et bien sûr ceci influencé fortement nos résultats. Une 
fois le problème réglé, bon nombre de micro patterns se sont retrouvés dans des taux 
plus raisonnables. 

 
III. Un modèle identique? 

Un problème majeur de notre analyse, et malheureusement difficilement 
solvable et celui de la structure du modèle PADL. Par exemple, notre analyse se base 
sur une solution de rétro conception, c'est-à-dire que nous travaillons directement sur 
les *.class binaire java. Est-ce que Joseph et Itay ont la même approche? Nous ne le 
savons pas, car cela n’est pas précisé dans l’article. De plus si c’est la cas est-ce que leur 
modèle est construit comme le notre? Il y a fort à parier que non.  

Cela nous amène à nous poser plusieurs questions. Par exemple dans un code 
source Java les classes n’ont pas forcement de constructeur. Mais dans notre modèle 
toutes les classes on un constructeur, c’est normal, puisque toute les classes en Java on 
un constructeur implicite une fois compilé. Hors plusieurs micro patterns se base sur 
les caractéristiques du constructeur. Dans ce cas devons nous traiter les 
caractéristiques d’un constructeur implicite? Rien ne nous permet de répondre avec 
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certitude à cette question. Cependant le modèle PADL ne permet pas de différencier 
un constructeur implicite ou explicite, en conséquence de quoi nous n’avons d’autre 
choix que de les traiter et donc d’éventuellement influencer nos résultats. 

 
IV. Immuable, une définition imprécise… 

Dans l’article certaine définition sont imprécise, c’est en autre le cas du terme 
immuable (imutable). Quand l’article traite des attributs immuable, considèrent ils ce 
type d’attribut comme jamais modifié, seulement modifié lors de l’instanciation de la 
classe, ou obligatoirement modifié à l’instanciation? Notre première approche fût celle 
d’attributs jamais modifiés, mais les résultats étaient très éloignés de ceux de l’article. 
Par la suite nous avons testé les deux autres solutions, et il est clair qu’un attribut 
immuable est obligatoirement modifié dans un des constructeurs de la classe et 
uniquement à ce moment. 

 
V. Les classes et interfaces héritées et ré implémentées. 

Un autre problème potentiel a occupé notre esprit pendant quelques temps, il 
s’agissait des classes Java. En effet lors de l’analyse effectuée dans l’article, les classes, 
et interfaces de Java hérités ou ré implémentées dans l’application étaient incluses dans 
les résultats. Devions-nous en tenir compte? Il est évident que oui. Mais dans ce cas 
comment approcher le problème? Lors de la création du modèle PADL, les classes 
héritées qui ne font pas partie de l’analyse à proprement dit (comme les classes de Java 
par exemple) se voient représentée dans le modèle PADL par des éléments appelés 
« ghost ». Chaque ghost contient un certain nombre d’informations sur la classe qu’il 
représente, mais ces informations ne sont pas aussi complètes que si elle avait fait 
partie de l’application analysée. Après une étude des informations dont nous avions 
besoin et de celles contenues dans les éléments ghost, nous nous sommes aperçue que 
ces dernières était suffisante et donc que nous n’avions pas besoin d’intégrer ces 
classes au modèle. 
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3. Analyse des Résultats. 

3.1. Résultats obtenues. 
Les résultats obtenus nous permettent de croire que l'implantation effectuée 

est proche de celle de l'article. Malgré quelques différences, les tendances observées 
dans nos résultats suivent celles de l'article.  

Afin de ne pas influencer les résultats produits dans l’article, Joseph Gil et Itay 
Maman on segmenté l’analyse des logiciels. Chaque module qui se retrouvant dans 
plusieurs applications analysées a été ajouté à un package nommé « shared », et ce 
package a été analysé séparément. Par la suite, l’analyse des applications s’est faite sans 
les modules ajoutés à ce package. 

Il nous est donc impossible de reproduire les résultats de l'article, car les 
corpus des classes choisis ne sont pas spécifiés précisément. A moins de reproduire 
exactement ces corpus de test, il est impossible d'affirmer à 100% que notre 
implantation de la détection des micro patterns est juste. De plus, nous avons 
communiqué avec les auteurs de l'article afin d'obtenir des détails sur le package 
« shared » et les classes faisant parties de l’analyse, mais nous n'avons pas obtenue de 
réponse. Cependant, et afin de valider nos résultats nous avons décidé d'observé les 
tendances générales de la prévalence et de la moyenne d'apparition de chaque micro 
pattern. 
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Le tableau que nous vous présentons ci-dessous montre la différence entre le 
nombre de classes que nous avons analysées et le nombre de classes analysées par les 
auteurs de l’article : 

Application : 
Nombre de classes 

que nous avons 
analysé : 

Nombre de classes 
analysées par les 

auteurs : 

Sun 1.4.2 7200 7525 

Scala 802 2678 

MJC 870 945 

Ant 1487 421 

JEdit 367 676 

Tomcat 3406 1434 

Poseidon 6397 8162 

JBoss 4321 13623 

Shared - 5979 

Total 24850 41443 
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Le tableau suivant présente les résultats que nos avons obtenues à la suite de 
nos analyses, ainsi que nos moyennes et les compare avec celles présentée dans 
l’article : 

 
Comme vous pouvez le voir les moyennes que nous obtenons sont très 

similaires à celles de l’article. 
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Vous trouverez ci-dessous le diagramme présentant la comparaison des 
moyennes d’apparitions obtenues par nos analyses et celles des auteurs de l’article : 

 
Comme vous pouvez le voir ces moyennes sont assez similaires, à l’exception 

des micro patterns « State Less » et « Common State ». Nous tentons d’apporter une 
réponse à ce résultat plus bas. 
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Voici le diagramme présentant le total des taux d’apparition et ce pour chaque 
micro pattern, en comparaison avec ceux présentés dans l’article : 

 
Nous constatons que les différences des taux ainsi obtenus suivent 

approximativement ceux du diagramme précédent. 
 
Nous avons tenté de prouver formellement que nos algorithmes de détection 

étaient justes malgré le fait que les résultats obtenus diffèrent de ceux de l'article. 
Malheureusement les technique utilisées pour essayer de démontrer que notre 
implantation était juste, n’ont pas été concluent; néanmoins cela ne signifie pas qu’elle 
est fausse.   

Pour ce faire, nous avons tenté de déterminer un intervalle de confiance pour 
la moyenne d’apparition de chacun des micro patterns, et ce afin de prouver la justesse 
de nos algorithmes malgré la différence des résultats.  Même si le nombre de classes 
analysées est grand, le fait de les regrouper en package de façon arbitraire, à créer des 
concentrations de micro pattern dans certain package et n’a donc pas donné de sens à 
ces calculs. Par exemple, selon les valeurs obtenues dans l’article, le micro patterns 
« Function Object » se retrouve avec une prévalence de 24.1% dans JEdit et seulement 
0.8% dans Scala. Ceci créer une grande variance dans les résultats et à pour effet de 
diminuer le niveau de certitude de l’intervalle de confiance. 
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3.2.  Les différences. 
Malgré une analyse approfondie des algorithmes de détection, la prévalence de 

certain micro patterns ne correspond pas au données du l'article.  Nous vous 
expliquons ici les différences et tentons d’apporté des pistes de réflexion pour 
solutionner ces problèmes. 

3.2.1. Le micro pattern Stateless. 

Il s’agit du micro pattern dont la différence entre les résultats que nous avons 
obtenus et ceux de l’article est la plus discordante. Étrangement, le micro pattern 
« Stateless », est l'un des plus faciles à détecter. 

Commençons par détailler ce micro pattern : 
Il s’agit d’une classe ne contenant aucuns champs à l’exception de ceux qui 

sont statiques et finaux. 
 
Comme vous pouvez le voir un tel cas ne devrait pas être difficile à détecté. 

Pourtant après une analyse approfondit de l'algorithme, nous n'avons pu déterminer la 
cause de cette différence.   

Les informations nécessaires pour la détection de ce micro pattern sont très 
simple et entièrement disponibles dans le modèle PADL.  Il y a deux possibilités pour 
expliquer cette différence : 

1. Un problème dans la représentation dans le modèle PADL. Pourtant 
des caractéristiques similaires sont utilisées dans PADL pour détecter 
d'autres micro patterns avec succès. De ce fait cette explication nous 
paraît peu probable. 

2. Une autre explication à ce problème peut ce trouvée dans la description 
même du micro pattern. Encore une fois, la caractéristique de ce micro 
pattern étant très simple, nous ne somme pas en mesure d'affirmer qu'il 
y ait une erreur d’interprétation ou de spécification de la description ou 
de l’implantation proposée dans l’article. 
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3.2.2. Le micro pattern Common State. 

La différence entre les résultats obtenus et les résultats observés dans l’article 
nous porte à croire que la définition de ce micro pattern est incomplète.  En effet, ce 
micro pattern se retrouve dans la même catégorie que le micro pattern « Stateless », qui 
lui-même, semble ne pas être détecté correctement.  Le problème de détection de ce 
micro pattern semble être lié à celui du micro pattern « Stateless ».  Donc, le problème 
de détection des deux micro patterns devrait être abordé d’une manière globale. 

 

4. Travaux futurs. 
Plusieurs évolutions de notre projet peuvent être prévues : 

• La première est l’intégration de nos fonctionnalités à l’interface 
graphique de Ptidej. Cette intégration n’a pas été faite car actuellement il 
y existe deux modules d’analyse des classes d’une application dans 
Ptidej : Le « simpleClassLoader » qui comme sont nom l’indique 
n’intègre pas toutes les informations de l’application dans le modèle, et 
le module « completeClassLoader » qui lui analyse en détail les classes de 
l’application et construit le modèle en conséquence. Actuellement le 
module utilisé par l’interface graphique de Ptidej est le 
« simpleClassLoader ». Hors l’analyse des micro patterns exige 
l’utilisation du « completeClassLoader ». Une évolution possible est 
donc de rendre accessible ce module et d’intégrer notre fonctionnalité 
directement par l’interface graphique. 

• Un deuxième travail qu’il serait intéressant d’effectuer est de valider nos 
résultats à la main. Certes nous avons déjà effectué cela sur de petites 
structures de test, mais il serait intéressant de le faire sur une grosse 
structure comme le JRE de Sun Microsystems. 

• La dernière évolution qui nous parait intéressante serait de connaître 
avec exactitude le corpus des classes intégrés dans le paquet « Shared » 
ainsi que celles analysée dans les différentes applications. Nous les 
connaissons déjà approximativement, puisque pour le paquet « Shared », 
il s’agit des classes partagées par les différents logiciels analysées. Il serait 
très utile d’en avoir une liste exacte. Ceci nous permettrait de faire une 
analyse plus proche de celle réalisée par Joseph Gil et Itay Maman, et 
donc de comparer nos résultats avec plus d’exactitude. 
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Conclusion. 

Les micro patterns semblent être une bonne approche dans l’épineux 
problème de l’évaluation de la qualité d’un logiciel. Certes ça ne résout pas tout le 
problème, mais cela apporte des éléments de solutions dans un domaine entre trop mal 
connu. 

Nous pouvons dire que notre implémentation des micro patterns est 
relativement proche de celles de l’article. La connaissance exacte des corpus des classes 
utilisées dans « shared » et choisis dans l’analyse devrait permettre de lever les points 
d’ombre restants et de valider avec exactitude nos résultats. Cependant en l’absence de 
réponse des auteurs de l’article, nous ne pouvons lever cette indétermination. 
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Abstract
Micro patterns are similar todesign patterns, except that micro pat-
terns stand at a lower, closer to the implementation, level of ab-
straction. Micro patterns are also unique in that they are mechan-
ically recognizable, since each such pattern can be expressed as a
formal condition on the structure of a class.

This paper presents a catalog of 27 micro-patterns defined on
JAVA classes and interfaces. The catalog captures a wide spec-
trum of common programming practices, including a particular
and (intentionally restricted) use of inheritance, immutability, data
management and wrapping, restricted creation, and emulation of
procedural-, modular-, and even functional- programming para-
digms with object oriented constructs. Together, the patterns present
a set of prototypes after which a large portion of allJAVA classes
and interfaces are modeled. We provide empirical indication that
this portion is as high as 75% .

A statistical analysis of occurrences of micro patterns in a large
software corpus, spanning some 70,000JAVA classes drawn from a
rich set of application domains, shows, with high confidence level
that the use of these patterns is not random. These results indi-
cate consciousness and discernible design decisions, which are sus-
tained in the software evolution. With high confidence level, we can
also show that the use of these patterns is tied to the specification,
or the purpose, that the software realizes.

Thetraceability, abundanceand thestatistical significanceof mi-
cro pattern occurrence raise the hope of using the classification of
software into these patterns for a more founded appreciation of its
design and code quality.
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1. Introduction
We all know what makes one algorithm better than another: time,

space, random-bits, disk access, etc. are established,objectiveand
well defined metrics [14] to be employed in making such a judge-
ment. In contrast, the assessment of quality of software design is an
illusive prospect. Despite the array of books and research articles
on the topic (see e.g., [11, 12, 28, 30]), a question such as “Is De-
signA better than DesignB?” can, still, only be decided by force
of the argumentation, and ultimately, by the personal andsubjective
perspective of the judge.

The research described in this paper is concerned with the impor-
tant, yet so recalcitrant, problem of finding sound objective meth-
ods of assessment of design. Medical experiments can prove that
a certain medication is better than another in treating a specific ail-
ment. We all want to carry similar controlled experiments to prove
that certain design methods are more likely to produce better soft-
ware than others. However, in contrast with many other natural
sciences, experiments on large scale software development are so
prohibitively costly that much of the research on the topic aban-
doned this hope.

Our attack on this multiple Gordian knot is by taking a different
angle at it: Rather than subjecting the development process to ex-
perimentation, we apply statistical tools toexistingartifacts of the
development. Instead of dealing with “isA better thanB?” sort of
questions, our research should help in rigorously determining“how
is A different thanB?’. We can also show that certain design tech-
niques are more common than others. The judgement of the quality
of design can perhaps then be reduced to the judgement of the abun-
dance of the design, and the quality of the software that uses it.

This angle is made possible by the bountiful class structure of
JAVA [3], together with the colossal, publicly available, base of soft-
ware in the language, which opens the road for sound claims and
understanding of the way people write software (more precisely, on
the software written by people). We argue that this class structure
makes it possible to find traces of design, specifically of what we
shall callmicro patterns.

1.1 Traceability of Design
Can design be traced and identified in software? The prime can-

didates of units of design to look for in the software are obviously
design patterns[22]. However, despite the dozen years that passed
since the original publication [21], and the voluminous research
ensuing it, attempts to automate and formalize design patterns are
scarce. Systems like DisCo [31], LePUS [16,17],SPINEandHEDGE-
HOG [6], constraint diagrams [27], Elemental Design Patterns [39],



and others did not gain much popularity. Specific research on detec-
tion of design patterns exhibited low precision, typically with high
rate of false negatives (see e.g., [9, 25]). Indeed, as Mak, Choy and
Lun [29] say, “. . . automation support to the utilization of design
patterns is still very limited”.

Traceable Patterns. To overcome this predicament, we define
the notion oftraceable patterns, which are similar to design pat-
terns, except that they are mechanically recognizable and stand at
a lower level of abstraction. A pattern is traceable if it can be ex-
pressed as asimple formal condition on the attributes, types, name
and body of a software module and its components.

It is required that these patterns are not random; they must cap-
ture a non-trivialidiom of the programming language which serves
a concrete purpose. Yet, by definition, traceable patterns stand at
a lower level of abstraction than that of the classical collection of
design patterns [22]. This is because traceable patterns are tied to
the implementation language and impose a condition on a single
software module.

Micro Patterns. Traceable patterns can be defined on many
kinds of modules, including code fragments, routines, classes and
packages. We coin the termmicro patternsas a short hand for
“class-level traceable patterns”. This paper is concerned with mi-
cro patterns, and specifically in the context of theJAVA program-
ming language. When no confusion can arise we shall, for the sake
of brevity, call these just patterns.

We present a catalog of 27 micro patterns, organized in 8 cate-
gories, including idioms for a particular and intentionally restricted
use of inheritance, immutability, wrapping and data management
classes, object oriented (OO) emulation of procedural, modular and
even functional programming paradigms, innovative use of class
structure, and many more.

Examples. A simple example for concreteness is theSampler
pattern in theControlled Creationcategory. This pattern defines
classes which have apublic constructor, but in addition have one
or morestatic public fields of the same type as the class it-
self. The purpose of such classes is to give clients access to pre-
made instances of the class, but also to create their own. TheSam-
pler is realized by, e.g., classColor from packagejava.awt of
theJAVA standard runtime environment, which offers a spectrum of
pre-defined colors as part of its interface.

Another example of a micro pattern is theImmutable pattern [24]
in theDegenerate Statecategory. This pattern prescribes an object
whose state cannot be changed after its construction.

The reader is invited to take a sneak preview at the entire list of
patterns in Sec. 3 for further examples.

1.2 Micro patterns and Productivity
Other than serving for a more rigorous study of design, our cata-

log, just as many other collection of patterns, can help indocumen-
tation, in conveying aknowledge base, and in setting avocabulary
for communication among and between coders and designers.

The vocabulary that the catalog sets can come handy in the de-
scription of implementation strategies of design patterns. Terms
such asImmutable, Box, Canopy, Pure Type or Implementor (all pat-
terns from the catalog) are useful in describing the implementation
of design patterns such asDECORATOR, BRIDGE, PROXY, etc. On
a broader perspective, software frameworks may use this terminol-
ogy to describe the various sorts of classes which take part in the
framework.

Our empirical study demonstrates the consistent abundance of
each of the patterns; further, the entire catalog characterizes about
three quarters of the classes in our corpus. These finding support

the claim that micro patterns can enhance the following aspects of
software engineering productivity:

• More Efficient Design. The catalog captures a substantial
body of knowledge gathered from a massive software cor-
pus. The use of this knowledge base can make the design
and implementation stages more efficient, by using one of
the recipes in the catalog, rather than designing a class from
scratch.

The mental effort saved by using familiar, named patterns for
certain classes, can be redirected to more important and diffi-
cult tasks.

• Code Learning and Reuse.Familiarity with the catalog makes
it possible for programmers to quickly understand an over-
whelming majority of theJAVA software base. They can then
focus more attention to the smaller fraction of the remaining
code, which presumably requires closer examination.

• Training. By learning the patterns in the catalog, program-
mers can be quickly introduced to the tools of trade ofJAVA

programming.

• Automation. Micro-patterns traceability makes it also pos-
sible to enrich automatically generated documentation pro-
duced by tools such as JavaDoc1.

1.3 New Language Constructs
The restrictive nature of the patterns in the catalog, combined

with their abundance might tell that the myriad of combinations
by which the different features of the underlying programming lan-
gauge is too great.

Consider the many different kinds of fields that aJAVA class can
have: they can bestatic or non-static , final or not-final ,
inherited or introduced by the class, and they can exhibit one of four
different kinds of visibility. Methods show an even greater vari-
ety, since they can also beabstract , final , overriding, or even
refining; and, there are also constructor methods, and anonymous
static initializers, . . . Our count shows that there are over forty dif-
ferent kinds of class members, without even considering variety due
to type signature or naming.

Micro patterns are not only patterns of class design. They are
also patterns (in the information theoretical sense of the term) by
which the programmer makes selections from this huge space of
different combinations of class features. By recognizing that the
expressive power of the programming language might be too large,
we may be lead not only to a more structured system of teaching
design, but also of maturing some of these combinations into full
blown language constructs.

The precise definition of micro patterns makes it possible to evolve
some of the patterns into language constructs, in the manner sug-
gested by Agerbo and Cornils [1] regarding the incorporation of
design patterns into a programming language (interestingly, the mo-
tivation for JAVA ’s newenum facility is reflected by the prevalence
of Augmented Type andPool micro pattern).

1.4 Statistical Inference
We next pose several research questions regarding the use of mi-

cro patterns in practice. In the paper we apply statistical inference
in an attempt to answer these. For this purpose, we assembled a
large corpus ofJAVA software from 14 different software collec-
tions, from four different application domains. In total, the corpus
spanned over seventy thousand classes. The statistical analysis was
1http://java.sun.com/j2se/javadoc



carried out on the results of matching the micro patterns against the
corpus.

Langauge Constraints or Software design?We found that mi-
cro patterns are abundant inJAVA . A basic question is whether the
existence and choice of use of these patterns is an artifact of lan-
gauge design rather than software design? In other words, we would
like to know whether this abundance reflects true design decisions
rather than following the invisible tracks and paths that theJAVA

designers have set in the language.
The analysis of our empirical results suggest that the latter is very

unlikely. Specifically, the findings in Sec. 8 indicate that with high
confidence level (α < 0.01), it is not the case that patterns occur in
JAVA with a fixed random probability, irrespective of the program-
ming context.

Specification Design or Software Design?Another related ques-
tion is whether the choice of patterns is decreed by the software
specification, rather than being a matter of choice of the implemen-
tor. The answer we give in Sec. 10 is that both factors contribute to
this choice.

On the one hand, at high confidence level (in the statistical sense
of this phrase), we can claim that different implementations of the
same specification willtendto use the same patterns.

On the other hand, the vendor or software team has a degree of
freedom in making this choice, i.e., not all implementations of the
same specification will follow the same combination of patterns.

Moreover, we can claim, and again with the soundness of statis-
tical high confidence, that the exercise of this degree of freedom is
not random, but rather an expression of a specific and discernible
style.

Sec. 10 also shows that the choice of pattern for each class is
sustained in different editions of the same software.

Individual Value of Each of the Patterns?A fundamental ques-
tion regarding micro patterns is whether each of the patterns in the
catalog is valuable. For example, one may argue that patterns such
as Pseudo Class and Cobol like capture bad coding practices and
thus should not be included in our catalog. A similar reasoning may
suggest that the abundance of patterns such asDesignator or Record
is so small that they deliver no practical value to a programmer.

It turns out that our research can provide an objective, quantita-
tive answer to this question of“the value of a single pattern”: We
show that each of the patterns matters for the statistical distinction
between software products of different origins.

Furthermore, we show that since a class can be characterized by
more than one pattern, the catalog is, in a sense, greater than the
sum of its parts.

Specifically, we define an information theoretical metric of the
amount of design information, i.e., the number of bits, that the cat-
alog reveals on a software collection. Our experiments indicate that
in average the catalog provides about 5 bits of design information
on the classes in our corpus, and, this number is greater than the
sum of the information that the individual patterns provide (Sec. 7).

Can Patterns be Used to Characterize Software?As explained
above, the question of whether the existence of patterns matter to
the quality of the design or the coding is in a sense philosophical.
The reason is that we do not yet have sufficient objective means of
quality evaluation.

Still, even when these means mature, or if we suffice ourselves
with a subjective evaluation, an important question is whether the
choice of patterns makes a significant and meaningful influence on
the software.

Our answer to this question is two fold.

1. We show that the catalog touches a great deal of the software:
Three out of four classes can be characterized by the catalog;
many carry even more than one pattern label (see Sec. 7).

2. We show that the differences between pattern prevalence lev-
els in different software collections are significant (Sec. 8).

Therefore, we have that the patterns as a whole are significant in
characterizing a large portion of software collections. Of course, we
cannot show that the characterization of software by patterns, i.e.,
these 5 bits of information, are directly tied with quality. Nonethe-
less, one may still be able to draw conclusions from the fact that
a pattern is used extensively in software that came from respected
vendors such as Sun or the Apache group.

The question of the extent by which the micro patterns in the cat-
alogcontributesto the global (or local) software quality, is difficult,
and must be left open for debate or further research, in which the
finding of this paper, as well as the statistical methods we employ
may become useful.

Outline. The remainder of this paper can be divided to three parts. The
first part is concerned with the description of micro patterns: Sec. 2 gives an
overview of the patterns catalog, while the individual patterns are described
in detail in Sec. 3. Sec. 4 then elaborates further on the notion, including
a comparison to design patterns, and to what may be calledimplementation
patterns[4].

The second part is dedicated to the experiments. Sec. 5 defines the notion
of entropy of a pattern. The software corpus is described in Sec. 6, while the
core of the experimental results are in Sec. 7.

In the third part of this paper, we move on to statistical analysis of the
empirical results. Sec. 8 employs statistical tests to check whether the dif-
ference in prevalence levels are significant. Sec. 9 is an intermediate dis-
cussion which helps in understanding the significance of the differences.
Sec. 10 continues the statistical investigation, by checking whether the pat-
terns make statistically significant distinction between different versions of
the same software.

Related work is the subject of Sec. 11. Sec. 12 reflects back on the results,
and raises directions for further research.

2. The Micro Patterns Catalog
To compare micro patterns to design patterns, implementation

patterns, and other kinds of patterns, we need to become familiar
with the micro patterns themselves.

This section overviews the micro patternscatalog, briefly pre-
senting the patterns. A more detailed description of the patterns is
in the subsequent Sec. 3.

2.1 The Construction of the Catalog
The process by which the catalog was conceived may be instruc-

tive for understanding its structure. Variations on this process may
help in finding other micro patterns which we have missed.

The search for micro patterns started by considering the various
kinds of features that aJAVA class may have. We tried then to work
out meaningful and useful restrictions of the freedom in using these
features. To do so, we raised questions such as “how could a class
with no fields be useful?”, “ are there any classes of this sort in ex-
istence?”, “ how can these classes be characterized?”. Conversely,
having thought of a useful programming practice, we tried to trans-
late it into a condition on the code, and then inspect classes that
matched this condition.

We implemented each of these initial “pre-patterns” and applied
them to the classes in the corpus. Manual inspection of the code of
these classes lead to a refinement of some of the definitions, aban-
donment of others, merges and splits of others, until the catalog
reached its current shape.

Thus, the search for patterns started from definitions, which lead
to code inspection, and then to the refinement of the definitions.



It is tempting to do the converse, i.e., cluster the existing code
base, and discover patterns in it, devoid of any a priori dictations.
To do so we, we tried several approaches. For example, we broke
down the conditions we already discovered into atomic predicates
(“basic features” in the learning lingo), such as “number of instance
fields is 1”, “no superinterfaces”, etc.

The values of these predicates on the classes in the software cor-
pus were then fed into an associations rules analyzer [47]. In return,
the analyzer generated long lists of dependencies between these
predicates, sorted in descending order of strength.

Unfortunately, none of these dependencies revealed something
that we could have interpreted as a purposeful pattern. Other estab-
lished techniques of machine learning did not work for us.

2.2 The Structure of the Catalog
Consider Fig. 1, which shows a global map of the catalog, includ-

ing the 8 categories, and the placement of the 27 micro patterns into
these. (The patterns themselves are described in brief in Tab. 1.)
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Rounded rectangles denote pattern categories in which state, be-
havior, or construction is degenerate, rectangles denote cate-
gories of patterns for containment, while trapezoids denote pat-
terns used for inheritance.

Figure 1: A map of the micro patterns catalog

TheX-dimension of Fig. 1 corresponds to class behavior. Cate-
gories at the left hand side of the map are those of patterns which
restrict the class behavior more than patterns which belong to cate-
gories at the right.

Similarly, the Y -dimension of the figure corresponds to class
state: Categories at the upper portion of the map are of patterns
restricting the class state more than patterns which belong to cate-
gories at the bottom of the map.

Altogether, there are four categories (depicted as rounded corners
rectangles in the figure) in which the class behavioral, or creational
or variability (state) aspects of a class are degenerate:Degenerate
State and Behavior, Degenerate State, Degenerate Behaviorand
Restricted Creation.

Depicted as rectangles in Fig. 1, there are two categories pertain-
ing to containment: TheData Managerscategory is that of patterns
which directly store and manage data; TheWrapperscategory con-
tains patterns which wrap other classes.

Finally, there are also two categories pertaining to inheritance:
Base Classesand Inheritors. These categories are portrayed as
trapezoids in the figure.

Tab. 1 gives an alternative, textual representation of the informa-
tion depicted in Fig. 1. As can be seen in the table (and also in
Fig. 1), the categories are not disjoint. There are a number of pat-
terns which belong in two categories. The last column of the table
shows the additional category of such patterns.

For example,Pseudo Class pattern belongs both to theDegener-
ate State and Behaviorand theBase Classescategories;Pure Type
is aBase Classwhich also exhibitsDegenerate State and Behavior.
Such patterns are described in one of their categories, and merely
mentioned in the others.

This table also tersely describes each of the patterns. It is impor-
tant however to note that this one line description, by nature, cannot
be precise or complete. To see that, recall that there are many, not
necessarily disjoint, kinds of methods whichJAVA admits, includ-
ing inherited methods, static methods, concrete methods, abstract
methods, constructors, etc.

There are therefore several ways of translating a simple statement
such as“all methods are public”into a precise and complete con-
dition on the code. For example, one needs to decide whether the
universal quantification in this statement precludes inheriting pro-
tected methods.

Hence, the descriptions presented in Tab. 1 should serve merely
as an intuitive summary. The definitions in the forthcoming Sec. 3
provide a more precise description of the micro patterns.

3. Description of the Micro Patterns
In this section, we will try to explain better thepurposeof each

pattern, give an example of its use, and derive a more precise def-
inition out of it. Still, for space limitations, we cannot provide the
full formal expression of the condition of each pattern.

The largest patterns bulk is described in Sec. 3.1, which is con-
cerned with theDegenerate State and Behavior, Degenerate State,
Degenerate BehaviorandRestricted Creationcategories.

Containment-based patterns are described in Sec. 3.2. Patterns
related to inheritance, i.e.,Base ClassesandInheritorsare the sub-
ject of Sec. 3.3.

3.1 Degenerate Classes
Out of the 27 patterns in the catalog, there are 21 patterns in

which the state, behavior or the creation are degenerate in one way
or another. This section describes the 12 patterns out of these which
have no other category. The remaining 9 patterns are described to-
gether with their other respective category.

3.1.1 Degenerate State and Behavior
The first, and most simple category of micro patterns, includes

those interfaces and classes in which both state and behavior are
extremely degenerate. This degeneracy means, in most cases, that
the class (or interface) does not define any variables or methods.
Despite these severe restrictions, classes and interfaces which fall
into this group are useful in tasks such as making and managing
global definitions, class tagging, and more generally for defining
and managing a taxonomy.

In addition to the patterns listed below, this category also contains
thePure Type, Augmented Type, Pseudo Class, andState Machine
micro patterns which are described in theBase Classescategory.

1. Designator. The most trivial interface is an empty one. Interest-
ingly, vacuous interfaces are employed in a powerful programming
technique, of tagging classes in such a way that these tags can be
examined at runtime.

For example, a class thatimplements the empty interfaceClone-



Main
Category

Pattern Short description Additional
Category

D
egenerate

C
lasses

Degenerate
State and
Behavior

Designator An interface with absolutely no members.
Taxonomy An empty interface extending another interface.
Joiner An empty interface joining two or more superinterfaces.
Pool A class which declares only static final fields, but no methods.

Degenerate
Behavior

Function Pointer A class with a single public instance method, but with no fields.
Function Object A class with a single public instance method, and at least one instance field.
Cobol Like A class with a single static method, but no instance members

Degenerate
State

Stateless A class with no fields, other than static final ones.
Common State A class in which all fields are static.
Immutable A class with several instance fields, which are assigned exactly

once, during instance construction.

Controlled
Creation

Restricted Creation A class with no public constructors, and at least one static field of
the same type as the class

Sampler A class with one or more public constructors, and at least one static
field of the same type as the class

C
ontainm

ent

Wrappers

Box A class which has exactly one, mutable, instance field.
Compound Box A class with exactly one non primitive instance field.
Canopy A class with exactly one instance field that it assigned exactly once,

during instance construction.
Degenerate
State

Data
Managers

Record A class in which all fields are public, no declared methods. Degenerate
BehaviorData Manager A class where all methods are either setters or getters.

Sink A class whose methods do not propagate calls to any other class.

Inheritance

Base
Classes

Outline A class where at least two methods invoke an abstract method on “this”
Trait An abstract class which has no state.

Degenerate
State

State Machine An interface whose methods accept no parameters.
Degenerate
State and
Behavior

Pure Type A class with only abstract methods, and no static members, and no fields
Augmented Type Only abstract methods and three or more static final fields of the same type
Pseudo Class A class which can be rewritten as an interface: no concrete

methods, only static fields

Inheritors
Implementor A concrete class, where all the methods override inherited abstract methods.
Overrider A class in which all methods override inherited, non-abstract methods.
Extender A class which extends the inherited protocol, without overriding any methods.

Table 1: Micro patterns in the catalog

able 2 indicates (at run time) that it is legal to make a field-for-field
copy of instances of that class.

Thus, aDesignator micro pattern is an interface which does notde-
clareany methods, does notdefineany static fields or methods, and
does not inherit such members from any of its superinterfaces.

A class can also beDesignator if its definition, as well as the defin-
itions of all of its ancestors (other thanObject ), are empty.

PatternDesignator is the rarest, with only 0.2% prevalence in our
software corpus. It was included in the catalog because it presents
an importantJAVA technique, which is also easily discernible.

2. Taxonomy. Even if the definition of an interface is empty it may
still extend another, potentially non-empty, interface.

Consider for example interfaceDocAttribute (defined in pack-
agejavax.print.attribute ). This interface extends inter-
faceAttribute in the same package without adding any further
declarations. InterfaceDocAttribute is used, similarly to the
Designator micro pattern, for tagging purposes—specifically that
the attribute at hand is specialized for what is known as “Doc” in
the JRE.

An empty interface which extends a single interface is called aTax-
onomy, since it is included, in the subtyping sense, in its parent, but
otherwise identical to it.

There are also classes which areTaxonomy. Such a class must sim-
ilarly be empty, i.e., add no fields nor methods to its parent. Since

2This, and all subsequent examples are drawn from the standard
Java Runtime Library.

constructors are not inherited, an empty class may contain construc-
tors. ATaxonomy class may not implement any interfaces.

This micro pattern is very common in the hierarchy ofJAVA ’s ex-
ception classes, such as:EOFException which extendsIOEx-
ception. The reason is that selection of acatch clause is de-
termined by the runtime type of the thrown exception, and not by
its state.

3. Joiner. An empty interface which extends more than one inter-
face is called aJoiner, since in effect, it joins together the sets of
members of its parents.

For example, the interfaceMouseInputListener joins together
two other interfaces: interfaceMouseMotionListener and in-
terfaceMouseListener .

An empty class which implements one or more interfaces is also
a Joiner. For example, classLinkedHashSet marries together
classHashSet and three interfacesCloneable , Serializ-
able andSet .

4. Pool. The most degenerate classes are those which have neither
state nor behavior. Such a class is distinguished by the requirement
that it declares no instance fields. Moreover, all of its declared static
fields must be final3. Another requirement is that the class has no
methods (other than those inherited fromObject , or automatically
generated constructors).

3If a class hasfinal instance fields, then, each of its instances
may have a different (immutable) state, and therefore it cannot be
characterized as having no state.



A Pool is a class defined by these requirements. It serves a the
purpose of grouping together a set of named constants.

Programmers often useinterface s for thePool micro pattern.
For example, packagejavax.swing includes interfaceSwing-
Constants which defines constants used in positioning and ori-
enting screen components.

The pattern, also called“constant interface anti-pattern”[7], makes
it possible to incorporate a name space of definitions into a class by
adding animplements clause to that class.

3.1.2 Degenerate Behavior
The degenerate behavior category relates to classes with no meth-

ods at all, classes that have a single method, or classes whose meth-
ods are very simple.

5. Function Pointer. Very peculiar are those classes which have no
fields at all, and only a singlepublic instance method.

An example is classLdapNameParser (which is defined in pack-
agecom.sun.jndi.ldap.LdapNameParser ). This class has
a singleparse method, with (as expected) a string parameter.

Instances ofFunction Pointer classes represent the equivalent of a
function pointer (or a pointer to procedure) in the procedural pro-
gramming paradigm, or of a function value in the functional pro-
gramming paradigm. Such an instance can then be used to make
an indirect polymorphic call to this function. The task of function
composition (as in the functional programming paradigm), can be
achieved by using two such instances.

6. Function Object. The Function Object micro pattern is similar
to theFunction Pointer micro pattern. The only difference is that
Function Object has instance fields (which are often set by the class
constructor). Thus, an instance ofFunction Object class can store
parameters to the main method of the class.

The Function Object pattern matches many anonymous classes in
the JRE which implement an interface with a single method. These
are mostly event handlers, passed as callback hooks in GUI libraries
(AWT and Swing). Hence, such classes often realize theCOM-
MAND design pattern.

7. Cobol like. Formally, theCobol like micro pattern is defined by
the requirement that a class has a single static method, one or more
static variables, and no instance methods or fields. This particular
programming style makes a significant deviation from the object
oriented paradigm. Although the prevalence of this pattern is van-
ishingly small, instances can be found even in mature libraries.

Beginner programmers may tend to useCobol like for their main
class, i.e., the class with function

public static void main(String[] args)

The prevalence ofCobol like is not high, standing at the 0.5% level
in our corpus. However, we found that it occurs very frequently
(13.1%) in the sample programs included with theJAVA Tutorial [10]
guides.

The Degenerate Behaviorcategory also includes two other pat-
terns: Record, which has no methods at all, andData Manager, in
which all methods are either setters or getters. The two also belong
in theData Managerscategory, and are described below (Sec. 3.2.2)
with the other patterns of that category.

3.1.3 Degenerate State
TheDegenerate Statecategory pertains to classes whose instances

have no state at all, or that their state is shared by other classes,
or that they are immutable. In this category we also find theTrait
pattern which is defined under its other,Base Classes, category
(Sec. 3.3.1), and theCanopy pattern (defined underWrappers).

8. Stateless. If a class has no fields at all (except for fields which
are bothstatic andfinal ), then it is stateless. The behavior of
such a class cannot depend on its history. Therefore, the execution
of each of its methods can only be dictated by the parameters.

Micro patternStateless thus captures classes which are a named
collection of procedures, and is a representation, in the object-oriented
world, of a software library in the procedural programming para-
digm.

A famous example of theStateless micro pattern is theArrays
class, from packagejava.util .

9. Common State. At the next level of complexity, stand classes
that maintain state, but this state is shared by all of their instances.
Specifically, a class that has no instance fields, but at least one static
field is aCommon State.

For example, the classSystem manages (among other things) the
global input, output, and error streams.

A Common State with no instance methods is in fact an incarnation
of themodular4 programming paradigmin theJAVA world.

10. Immutable. An immutable class is class whose instance fields
are only changed by its constructors.

The Canopy is an immutable class which has exactly one instance
field. Its description is placed under its other category,Wrappers
(Sec. 3.2.1). More general is theImmutable micro pattern, which
stands for immutable classes which haveat least twoinstance fields.

Classjava.util.jar.Manifest is anImmutable class since
assignment to its two fields takes place only in constructors code.

3.1.4 Controlled Creation
There are two patterns in this category, which match classes in

which there is a special protocol for creating objects.
The first pattern prevents clients from creating instances directly.

The second pattern provides to clients ready made instances.

11. Restricted Creation. A class with no public constructors, and at
least onestatic field of the same type as the class, matches the
Restricted Creation micro pattern.

Many SINGLETON classes satisfy this criteria. A famous example
is java.lang.Runtime .

12. Sampler. TheSampler matches classes class with at least one
public constructor, and at least onestatic field whose type is the
same as that of the class. These classes allow client code to create
new instances, but they also provide several predefined instances.

An example is classColor (in packagejava.awt ) with fields
such asred , green andblue .

3.2 Containment
We identified six patterns by which classes manage their internal
fields. There are three patterns in theWrapperscategory, concerned
with classes in which there is a principal field. The case of multiple
fields is covered by the three patterns in theData Managerscate-
gory.
4The term “modular” means here module-oriented, where mod-
ules are software units such asADA [44] packages and modules
in MODULA [37].



3.2.1 Wrappers
Wrappers are classes which wrap a central instance field with their
methods. They tend to delegate functionality to this field. The main
pattern in this category isBox. The case that the wrapper protects
the field from changes is covered byCanopy. There are cases in
which there is an auxiliary field; these are captured by patternCom-
pound Box.

13. Box. A Box is class with exactly one instance field. This in-
stance field is mutated by at least one of the methods, or one of the
static methods, of the class.
ClassCRC32(in the java.util.crc package) is an example of
this micro pattern. Its entire state is represented by a single field
(int crc ), which is mutated by method

update( int i)

14. Canopy. A Canopy is a class with exactly one instance field
which can only changed by the constructors of this cass.

The nameCanopy draws from the visual association of a trans-
parent enclosure set over a precious object; an enclosure which
makes it possible to see, but not touch, the protected item.

ClassInteger , which boxes an immutableint field, is a famous
example ofCanopy.
As explained above, since theCanopy pattern captures immutable
classes, it also belongs in theDegenerate Statecategory.

15. Compound Box. This is a variant of aBox class with exactly one
non-primitive instance field, and, additionally, one or more primi-
tive instance fields. The highly popularVector class matches the
Compound Box pattern.

3.2.2 Data Managers
Data managers are classes whose main purpose is to manage the
data stored in a set of instance variables.

16. Record. JAVA makes it possible to define classes which look
and feel much likePASCAL [46] record types. A class matches
the Record micro pattern if all of its fields arepublic and if
has no methods other than constructors and methods inherited from
Object .
Perhaps surprisingly, there is a considerable number of examples
of this pattern in theJAVA standard library. For example, in pack-
agejava.sql we find classDriverPropertyInfo which is
a record managing a textual property passed to a JDBC driver.

17. Data Manager. Experienced object-oriented programmers will
encapsulate all fields of aRecord and use setter and getter methods
to access these.
We say that a class is aData Manager if all of its methods (including
inherited ones) are either setters or getters5.
Recall thatData Manager micro pattern (just as the previously de-
scribedRecord) also belong to theDegenerate Behaviorcategory.

18. Sink. A class where its declared methods do not call neither
instance methods nor static methods is aSink.
ClassJarEntry of packagejava.util.jar.JarEntry is
an example ofSink.

3.3 Inheritance
Finally, we have eight micro patterns which capture some of the
common techniques by which classes prepare for inheritance (the
Base Classescategory), or interact with their superclass (theInher-
itors category).
5We used the most conservative approach for the detection of such
methods.

3.3.1 Base Classes
This category includes five micro patterns capturing different ways
in which a base class can make preparations for its subclasses.

19. Outline. An Outline is an abstract class where two or more
declared methods invoke at least one abstract methods of the current
(“this”) object.

For example, the methods ofjava.io.Reader rely on the ab-
stract method

read( char ac[], int i, int j)

Obviously, Outline is related to theTEMPLATE METHOD design
pattern.

20. Trait. TheTrait pattern captures abstract classes which have no
state. Specifically, aTrait class must have no instance fields, and at
least one abstract method.

The termTrait follows the traits modules of Schärli, Ducasse,
Nierstrasz and Black [38]. A trait module, found in e.g., the
SCALA [35] programming language, is a collection of imple-
mented methods, but with no underlying state.

For instance, classNumber (of packagejava.lang ) provides an
implementation for two methods:shortValue() and for method
byteValue() . Other than this implementation, class Number
expects its subclass to provide the full state and complement the
implementation as necessary.

21. State Machine. It is not uncommon for an interface to define
only parameterless methods. Such an interface allows client code to
either query the state of the object, or, request the object to change
its state in some predefined manner. Since no parameters are passed,
the way the object changes is determined entirely by the object’s
dynamic type.

This sort of interface, captured by theState Machine pattern, is typ-
ical for state machine classes.

For example, the interfacejava.util.Iterator describes the
protocol of the standardJAVA iterator, which is actually a state ma-
chine that has two possible transitions:next() andremove() .
The third method,hasNext() is a query that tests whether the
iteration is complete. In the state machine analogy, this query is
equivalent for checking if the machine’s final state was reached.

22. Pure Type. A class that has absolutely no implementation de-
tails is aPure Type. Specifically, the requirements are that the class
is abstract, has no static members, at least one method, all of its
methods are abstract, and that it has no instance fields. In particular,
any interface which has at least one method, but no static definitions
is aPure Type.

An example is classBufferStrategy , which is found in pack-
agejava.awt.image.BufferStrategy . As the documen-
tation of this class states, it “represents the mechanism with which to
organize complex memory . . .”. The concrete implementation can
only be fixed in a subclass, since, “Hardware and software limita-
tions determine whether and how a particular buffer strategy can
be implemented.”. Indeed, this class has nothing more than four
abstract methods which concrete subclasses must override.

23. Augmented Type. There are many interfaces and classes which
declare a type, but the definition of this type is not complete with-
out an auxiliary definition of anenumeration. An enumeration is
a means for making a new type by restricting the (usually infinite)
set of values of an existing type to smaller list whose members are
individually enumerated.

Typically, the restricted set is of size at least three (a set of cardinal-
ity two is in many cases best represented asboolean ).



For example, methodsexecute andgetMoreResults in in-
terfacejava.sql.Statement take anint parameter that sets
their mode of operation. Obviously, this parameter cannot assume
any integral value, since the set of distinct behaviors of these meth-
ods must be limited and small. This is the reason that this interface
gives symbolic names to the permissible values of this parameter.
Formally, anAugmented Type is a Pure Type except that it makes
three or morestatic final definitions of the same type.
PatternAugmented Type pattern is quite rare (0.5%), probably thanks
to the advent of the Enum mechanism to the language.

24. Pseudo Class. A Pseudo Class is an abstract class, with no in-
stance fields, and such that all of its instance methods areabstract ;
static data members and methods are permitted. APseudo Class
could bemechanicallyrewritten as an interface. For instance, class
Dictionary , the abstract parent of any class which maps keys to
values, could be rewritten as an interface.
Pseudo Class is an “anti-pattern” and is not so common; its preva-
lence is only 0.4%.

3.3.2 Inheritors
The three disjoint patterns in this category correspond to three dif-
ferent ways in which a class can use the definitions in its super-
class: implementing abstract methods, overriding existing methods
and enriching the inherited interface. The catalog does not include
patterns for classes which mix two or more of these three.

25. Implementor. An Implementor is a non-abstract class such that
all of its the public methods were declared as abstract in its super-
class.
An example is classSimpleFormatter , which is defined in the
java.util.logging package). This class has single public
method,

format(LogRecord logrecord) ,

which was declared abstract by the superclass,Formatter (of the
same package).

26. Overrider. A class where each of its declared public methods
overrides a non-abstract method inherited from its superclass. Such
a class changes the behavior of its superclass while retaining its pro-
tocol. A typicalOverrider class is theBufferedOutputStream
class.

27. Extender. An Extender is a class which extends the interface
inherited from its superclass and super interfaces, but does not over-
ride any method.
For example, classProperties (in java.util ) extends its
superclass (Hashtable ) by declaring several concrete methods,
which enrich the functionality provided to the client. None of these
methods overrides a previously implemented method, thus keeping
the superclass behavior intact. Note that anExtender may be re-
garded as an instantiation of a degenerate mixin class [8] over its
superclass.

4. On the Nature of Micro Patterns
Having described the patterns themselves, we are now ready to

discuss thenotionof micro patterns in some more detail.
As explained above, micro patterns are a kind of traceable pat-

terns.

DEFINITION 1. A traceable pattern is acondition on the at-
tributes, types, name and body of a module and its components,
which is recognizable (mechanically), purposeful, prevalent and
simple.

Micro patterns are special in that the condition described in the
condition Def. 1 applies to classes and interfaces. Lying outside the
scope of this paper are patterns whose condition applies to other
kinds of modules. We propose the termnano-patternsfor traceable
patterns which stand at the method or procedure level. The term
milli-patternscan then be used for traceable patterns at the package
level (or to any other kind of class grouping or mode of coopera-
tion).

Sec. 4.1 explains the four characteristics of traceable patterns.
Next, Sec. 4.2, discuss the differences between micro patterns and
design patterns, which are mostly due to the difference in abstrac-
tion level. Finally, Sec. 4.3 discusses the notion ofimplementation
patterns, and compares these with micro-patterns.

4.1 Traceable Patterns
We next discuss in greater detail the four properties of traceable

patterns:recognizability, purposefulness, prevalenceandsimplic-
ity.

Recognizability. The term“mechanically recognizable”means
that there exists a Turing machine which decides whether any given
module matches this condition. Thus, a condition “the module dele-
gates its responsibilities to others” is not recognizable. On the other
hand a predicate such as “each method invokes a method of another
class with the same name”, can be automatically checked.

Purposefulness. By purposefulwe mean that the condition
defining a micro pattern characterizes modules which fulfill a re-
curring need in a specific manner. The condition that the number
of methods is divisible by the number of fields does not constitute a
pattern. In contrast, micro patternCanopy describes classes which
have a single instance field that is assigned only once, at construc-
tion time. This idiom typically serves the purpose of managing
a single resource by a dedicated object, a practice which Strous-
trup [43] calls “Resource acquisition is initialization”.

Prevalence. Theprevalenceof a pattern (with respect to a cer-
tain collection of modules) is the portion of modules matched by
this pattern. Prevalence is an important indication that a micro pat-
tern is purposeful6.

The lower (and upper) bound on prevalence is determined by
common sense. The programming technique captured by theDes-
ignator pattern is so unique that a prevalence of0.2% is acceptable.
The prevalence ofImplementor, on the other hand, is circa30%.
Since patterns are made for distinguishing unique properties, we
will tend to negate the pattern definition if its prevalence is greater
than50%.

Simplicity. The simplicity requirement is not only a matter of
aesthetics: By sticking to first order predicate logic (FOPL), when-
ever possible restricted in Horn clauses form, should make it easier
for the pattern recognizer to suggest corrections in case the pattern
is violated.
Together, these four properties make traceable patterns useful: as
patterns they bring value to the manual work of the software en-
gineer in capturing a common and meaningful idiom of the pro-
gramming language. Traceability, expressed in the simplicity and
recognizability properties, help in automating some of the engi-
neer’s work.

4.2 Micro Patterns vs. Design Patterns
One of the difficult tasks in software development is bridging the

gap which separates the initialimprecise and informalsystem re-

6Clearly, it is not sufficient—classes in which the number of meth-
ods is prime are prevalent, but have no common purpose.



quirement from theprecise and formalmanifestation of software
in code written in a specific programming language. But even the
smaller steps along the bridge over this gap cannot be all formal,
precise or automatic. Design patterns make one important such
step, while implementation patterns, which are formally defined
construct, stand between the code and design patterns.

In most cases, a micro pattern is not a strategy of implementation
of a design pattern. For example, we discover that theCompound
Box micro pattern which is quite popular, is not acknowledged as a
design pattern.

There are however several obvious relations between design pat-
terns and micro patterns. For example, theFunction Object micro
pattern, is very useful for implementing theCOMMAND design pat-
tern;Sampler is one implementation of theFLYWEIGHT design pat-
tern; most of the classes which realize theSINGLETON pattern will
match theRestricted Creation micro pattern, etc.

Just like design pattern, implementation patterns follow anex-
tensional mode of definitionand satisfy thelocality criterion (in the
sense of the work of Eden and Kazman [18]). Still, there are several
consequences to the fact that micro patterns stand at a lower level
of abstraction:

• Scope.First, micro patterns are of a single software module
in a particular programming language. Examining the list of
micro patterns in Sec. 3 we can see that they are all about in-
dividual JAVA class es andinterface s. Design patterns
on the other hand are not so tied to a specific language, and
often pertain to two or more classes, sometimes to an entire
architecture.

• Recognizability.Second, a crucial property of micro patterns
is that they are easily recognizable by software, which ren-
ders a smooth path to automation. Florijn, Meirjer and Win-
sen [20] enumerate three key issues in automating design pat-
terns: application, validation anddiscovery. As van Emde
Boas argues [45], the expressiveness of the language used for
defining patterns, affects the complexity of these issues, and
in particular detection.

In using a formal language, which is at a lower level than
the free text description of the semantics of design patterns,
automation issues become much easier. Therefore, micro pat-
terns are, by definition, automatically recognizable.

We can also envisage a CASE tool which would help in their
application, by offering a boilerplate to be filled by the im-
plementor. For this reason, we try, whenever possible, to
present the condition in the form of Horn clause constraints.
As demonstrated (in another context) by Demsky and Ri-
nard [15], this particular form can be used to deduce,au-
tomatically or (for better performance) semi-automatically,
specific rules for correcting the input so that it matches a for-
mal constraint. Such rules can be used by the CASE tool to
generate useful warnings and advice to the programmer.

The requirement that micro patterns are written in FOPL makes
it possible to deterministicallychecka proof that one imple-
mentation pattern is mutually exclusive, contained, or over-
lapping with another.7 In contrast, distinct design patterns,
presented as solutions to two different problems, may be struc-
tured similarly, but be different in their intent. (A famous
example is made by theSTRATEGY and ADAPTER design

7If we stick to full blown FOPL, it is impossible to automatically
generate such a proof; it is possible to do so if patterns are con-
strained to use an appropriately selected subset of FOPL.

patterns.) It follows that there is an inherent ambiguity in the
process of discovering design patterns in software.

• Context Existence.Third is the observation that micro pat-
terns do not usually provide “a solution to a problem in a
context”. The design problem and the context in which it oc-
curs are not present when an implementation is carried out.
Indeed, much of the work on the automation of design forgets
the problem and the context.

Micro patterns are not different. For example, theSink micro
pattern, occurring in about a sixth of all classes, is too general
to be tied to a specific design problem. Nevertheless, there is
value in adhering to the pattern. This practice will reducing
code complexity, and promoting uniformity, decomposabil-
ity, and clarity.

Another example is theBox micro pattern, which represents
a useful programming technique. Incidently, this technique
occurs in many and not very related design patterns. TheBox
is therefore a term which can be used to describe and help
understand many classes. Yet, it may serve a multitude of
unrelated problems.

A third example is theFunction Pointer pattern, whose sin-
gle public instance method may serve many different pur-
poses. Yet, it is not easy to propose a unifying characteristic
of these.

Using the semiotic approach [34] to the interpretation of pat-
terns, we have that in traceable patterns there is distinction
between signifier and signified. A micro pattern is thus “a so-
lution in search of a problem”. It serves a concrete purpose,
but the programmer is still required to find the right question.

• Usability of Isolated Patterns.A fourth difference, resulting
from the loss of the problem and context in micro patterns, is
the utility of individual patterns. Knowledge of the problem
and context makes it possible for a design pattern to provide
much more information on the proposed solution. Thus, even
a single design pattern is useful on its own. In contrast, mi-
cro patterns are not as specific; their power stems from their
organization in a catalog, a box of tools, each with its own
specific purpose and utility.

Given an implementation task, the programmer can choose an
appropriate pattern from the catalog. Our empirical findings
show that, in the majority of cases, such a micro pattern will
be found. Admittedly, the nature of micro patterns is such that
they do not provide as much guidance as design patterns. On
the other hand, the guidance that a micro pattern does provide
is suited for automatization, and does not rely as much on
abilities of the individual taking that guidance.

• Empirical Evidence.Fifth, and perhaps most important is the
fact that implementation patterns carry massive empirical evi-
dence of their prevalence, their correlation with programming
practices, and the amount of information they carry. With the
absence of automatic detection tools, claims of the prevalence
of design patterns is necessarily limited to the yield of a man-
ual harvest.



4.3 Micro Patterns vs. Implementation
Patterns

Beck [4] presents an extensive discussion of implementation pat-
terns. His book enumerates as many as 92 such patterns, all pre-
sented in the context of theSMALLTALK [23] programming lan-
guage. These patterns touch software units of different levels: start-
ing at patterns of message send, going through patterns for tempo-
rary variables, followed by patterns detailing method implementa-
tion, climbing up to instance variables, and ending with single class
design.

Beck enumerates several roles thatimplementation patternsserve,
including help in reading the code, accelerating the implementation,
aid in communication between programmers and documentation.

These roles are not foreign to those of design patterns. Capturing
existing lore, and means of communication are essential character-
istics of all kinds of patterns.

Yet, implementation patterns come handy at a different stage of
the development process. Design patterns are mostly useful at the
drawing board. Implementation patterns are most effective when
the programmer opens the langauge specific integrated development
environment.

However, the fact that implementation patterns show up at a later
stage of the development process does not mean that they are always
traceable. Consider for example Beck’sComposed Methodimple-
mentation pattern. This pattern instructs theSMALLTALK program-
mer (indeed, a programmer in any language) to continue breaking
methods into smaller parts until each method satisfies the (informal)
condition that of serving a single identifiable task, and all operation
in it stand at the same level of abstraction. It is difficult to fathom
a simple formal predicate on the body of a method that will check
whether this condition is true.

Another example is implementation patternPluggable Selector
(similar to C’s function pointers) which may not be easy to detect.

At the other end stand patterns such asQuery Method, Com-
paring Method, andSetting Method, which are traceable. In our
terminology, these are called nano-patterns.

The other important difference distinguishing micro patterns from
implementation patterns is that micro patterns can be used at the late
design stage as well as during the implementation. While doing
class design, micro patterns can be employed to explain the kind of
operations expected in inheritance, and for better characterization
of the classes. At the implementation stage, the micro pattern(s)
prescribed to the class can be used as a guiding recipe, which can
even be checked automatically.

5. Definitions
The fact that micro patterns are defined on specific locations in

the code (classes, or more generally any other module), rather than
on the entire software fabric lets us make precise notions describing
pattern interaction.

We denote the prevalence of a patternp by ξ(p). Let p1 andp2

be patterns. We say thatp1 is containedin p2 if p1 → p2; they
aremutually exclusiveif p1 → ¬p2, i.e., a module can never match
more than one of them. Theco-prevalenceof the patterns (with
respect to a software collection) is the prevalence ofp1∧p2; they are
independentif their co-prevalence is a product of their respective
prevalence levels, i.e.,ξ(p1 ∧ p2) = ξ(p1)ξ(p2).

Let P = {p1, . . . , pn} be a patterns catalog. Then, thecover-
ageof the catalog is theξ(p1 ∨ · · · ∨ pn), i.e., prevalence of the
disjunction of all patterns in the catalog.

A catalog is more meaningful if the patterns in it are not mutually
exclusive. If this is the case, each module can be described by sev-

eral patterns in the catalog, and the whole catalog can present more
information than the simple classification of modules inton + 1
categories.

We will now make precise the of amount of information that a
catalog carries. First recall the definition of the information theo-
retical entropy.

DEFINITION 2. Let ξ1, . . . , ξk be a distribution, i.e., for alli =
1, . . . , k it holds that0 ≤ ξi ≤ 1, and

P
1≤i≤k ξi = 1. Then, the

entropyof ξ1, . . . , ξk is

H = H(ξ1, . . . , ξk) = −
X

1≤i≤k

ξi log2 ξi, (1)

where the summandξi log2 ξi is taken to be 0 ifξi = 0, 1.

The entropy is maximized when the distribution is to equal parts,
i.e.,pi = 1

k
for all i = 1, . . . , k, in which caseH = log2 k.

To gain a bit of intuition into Def. 2, let us apply it to a single
pattern with prevalenceξ (with respect to some software collection).
We can say that the pattern occurs with probabilityξ, and not occur
at probability1− ξ, giving rise to the following entropy

−ξ log2 ξ − (1− ξ) log2(1− ξ).

Suppose thatξ = 1
2n . Then, the first summand states that the fact

that pattern does occur carriesn bits of information (the event oc-
curs in only 1

2n of all cases), but these bits have to be weighted with
the “probability” of the event. The second summand corresponds to
the complement event, i.e., that the pattern does not occur.

Fig. 2 shows the entropy of a single pattern as a function of the
prevalence.
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Figure 2: Entropy vs. prevalence level of a single pattern.

As the figure shows, the entropy achieves its maximal value of 1
when the prevalence is 50% and drops to zero when the preva-
lence is zero. The entropy is 0.72 ifξ(p) = 20%, drops to 0.47
whenξ(p) = 10%, to 0.29 whenξ(p) = 5%, to 0.08 whenξ(p) =
1%, and to 0.01 whenξ(p) = 0.1%.

The entropy of an entire catalog is defined as the entropy of the
distribution of the many different combinations of patterns in the
catalog

DEFINITION 3. Theentropy of a catalogP (with respect to a
certain software collection) is

H(P ) = −
X

Q∈℘P

ξ(Q) log2 ξ(Q),

where℘P is the power set ofP andξ(Q) is the prevalence of the
event that all patterns in Q occur and all the patterns inP \ Q do



notoccur, i.e.,

ξ(Q) = ξ

0
@^

p∈Q

p and
^

p∈P\Q

¬p
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An entropy of (say) 4 of a catalog with respect to a certain soft-
ware collection can be understood as equivalent to the amount of
information obtained by a partitioning of the collection to16 = 24

equal parts. We can think of2H(P ) as theseparation power of the
catalog.

Information theory tells us that entropy is anadditiveproperty in
the sense that the entropy of a catalog of independent patterns is the
sumof the entropies of each of these events. If patterns in a catalog
are mutually exclusive, then the entropy of the catalog islessthan
the sum of the individual entropies.

As mentioned before, the patterns in our catalog are not mutually
exclusive, which makes the catalog more informative. On the other
hand, we do not expect software patterns to be truly independent. In
order to evaluate the contribution of each pattern to the expressive
power of the catalog, we can examine its marginal contribution to
the entropy of the catalog.

DEFINITION 4. The marginal entropyof patternp ∈ P with
respect to a catalogP , writtenH(p/P ) is

H(P )−H(P \ {p}).

The sum of the marginal entropies can be greater, smaller or
equal to the entropy of the whole catalog.

If a pattern is identical to one of the other patterns in the catalog,
or to any combination of these, then its marginal entropy is 0. Con-
versely, suppose that a certain pattern partitions every combination
of the other patterns in the catalog into two equal parts. Then, the
marginal entropy of this pattern is 1.

6. Data set
In the experiments, we measured the prevalence level of each

of the patterns in the catalog in large collections ofJAVA classes,
available in the.class binary format. As explained in Sec. 2
the analysis was carried out by invoking a set of predicates over all
classes in the collection.

A corpus of fourteen large collections ofJAVA classes, totalling
over three thousand packages, seventy thousand classes and half a
million methods served as data set for our experiments. Tab. 2 sum-
marizes some of the essential size parameters of these collections.
The table does not include a line count of the collections in the cor-
pus, since many of the collections are available in binary format
only.

As can be seen in the table, the collections, although all large,
vary in size. The smallest collection (JEdit) has about 800 classes
and 6,000 methods, while the largest (JBoss) has almost a thou-
sand packages, 18,699 classes and 157,460 methods. The median
number of classes is about 4,000.

These collections can be partitioned into several groups

1. Implementations of the standardJAVA runtime environment.
The JAVA runtime environment (JRE) is the language stan-
dard library, as implemented by the language vendor, which
provides to theJAVA programmer essential runtime services
such as text manipulation, input and output, reflection, data
structure management, etc.

We included several different implementations of the JRE in
our corpus for two purposes. First, to examine the stability

Collection Domain Packages Classes Methods
Kaffe1.1 JRE impl. 75 1,220 10,945
Kaffe1.1.4 JRE impl. 152 2,511 22,022
Sun1.1 JRE impl. 67 991 9,448
Sun1.2 JRE impl. 131 4,336 36,661
Sun1.3 JRE impl. 170 5,213 44,747
Sun1.4.1 JRE impl. 314 8,216 73,834
Sun1.4.2 JRE impl. 330 8,740 76,675
Scala Lang. tools 96 3,382 32,008
MJC Lang. tools 41 1,141 10,927
Ant Lang. tools 120 1,970 17,902
JEdit GUI 23 805 6,110
Tomcat Server 280 4,335 43,868
Poseidon GUI 594 10,052 77,988
JBoss Server 998 18,699 157,460
Total 3,391 71,611 620,595

Table 2: The JAVA class collections comprising the corpus.

of patterns in the course of evolution of a library, we used the
vanilla Sun implementations of versions 1.1, 1.2, 1.3, 1.4.1,
and 1.4.2 of the J2SE specification. These are denoted re-
spectively bySun1.1, Sun1.2, Sun1.3, Sun1.4.1 andSun1.4.2

in Tab. 2.

Second, to compare the incidence of micro patterns across
different implementations of the same specification, we used
implementations of several other vendors. The first of which
is the JRE implementation included in the Kaffe project8–
which is a non-commercial JVM implementation. Our corpus
includes two versions of this implementation:Kaffe1.1 and
Kaffe1.1.4 distinguished by their JRE version.

We had also tried to expand our corpus with three commercial
JRE libraries supplied with theses JVM products: (i)IBM 32-
bit Runtime Environment forJAVA 2, version 1.4.2; (ii)J2SE
for HP integrity, version 1.4.2; and (iii)Weblogic JRockit
1.4.2 by BEA. Eventually, these three collections werenot
included in the corpus since they all exhibited an overwhelm-
ing similarity with Sun1.4.2. Our experiments indicated that
these three were in many ways a port of the Sun implemen-
tation. Obviously, no significant data can be drawn from the
analysis of these.

2. GUI Applications. The corpus includes two GUI applica-
tions: JEdit—which is version 4.2 of the programmer’s text
editor written inJAVA with a Swing GUI, andPoseidon–a
popular UML modeling tool delivered by Gentleware9. (We
used version 2.5.1 of the community edition of the product.)

3. Server Applications.There were two collections in this cate-
gory: JBoss—the largest collection in our corpus is version
3.2.6 of the famous JBoss10 application server (JBOSS AS)
which is an open source implementation of the J2EE stan-
dard,Tomcat—part of theApache Jakarta Project11, which
is a servlet container used by http servers to allowJAVA code
to create dynamic web pages (version 5.0.28).

8http://www.kaffe.org
9http://www.gentleware.com

10http://www.jboss.org
11http://jakarta.apache.org



4. Compilers and Langauge Tools. This category includesAnt—
another component of the Apache project12–a build tool which
offers functionality that is similar, in principle, to the popu-
lar make utility (version 1.6.2), andScala—version 1.3.0.4
of the implementation of the Scala multi-paradigm program-
ming language [35]; and,MJC—version 1.3 of the compiler
of multiJAVA , a language extension which adds open classes
and symmetric multiple dispatch to the language.

Thus, the corpus represents a variety of software origins (acad-
emia, open source communities and several independent commer-
cial companies), interaction mode (GUI, command line, servers,
and libraries), and application domains (databases, languages, text
processing).

Collection Packages Classes Methods
Sun1.4.2 272 7,525 66,676
Scala 68 2,678 25,186
MJC 32 945 8,607
Ant 45 421 3,883
JEdit 21 676 4,653
Tomcat 132 1,434 14,367
Poseidon 477 8,162 61,645
JBoss 750 13,623 110,820
Shared 346 5,979 55,431
Total 2,143 41,443 351,268

Table 3: The JAVA class collections in the pruned corpus.

Note that the totals in the last line of Tab. 2 include multiple
and probably not entirely independent implementations of the same
classes. For experiments and calculations which required indepen-
dence of the implementation, we used only collectionSun1.4.2 out
of the nine different JRE implementations, Also, as many as 5,979
classes recurred in several collections since software manufacturers
tend to package external libraries in their binary distribution.

To assure independence, all such classes were pruned out of their
respective collections and included in a pseudo-collection named
Shared. (Interestingly, the 100 or so classes comprising the famous
Junit [5] library, were found in several collections in our corpus,
thus turningShared into a super set of theJunit library.) This
process defined aPruned software corpus by

Pruned = {Sun1.4.2, Scala, MJC, Ant, JEdit, Tomcat,

Poseidon, JBoss, Shared}.
The total size of this corpus and each of the (pruned) collections

in it is reported in Tab. 3. We can see that the elimination of dupli-
cates and dependent implementations halved the size of the corpus.
In total, more than 41,000 independent class comprise the pruned
corpus.

7. Experimental Results
The experimental results of running the pattern analyzer on the

pruned corpus are summarized in Tab. 4.
The table shows the prevalence, coverage, entropy and marginal

entropy of the patterns in the corpus. The body of the table presents,
for each micro pattern and each software collection, theprevalence
of the micro pattern in the collection, that is, the percentage of
classes in this collection which match this micro pattern. The two

12http://ant.apache.org

last rows give a summary of each collection. (Note that due to over-
lap between the patterns, columns do not add up to the total cov-
erage in the last row.) The seven last columns give summarizing
statistics on each of the patterns.

In this section we take mostly a broad perspective in the inspec-
tion of this information, and will be interested in the more global
properties of the catalog, including coverage, entropy, and marginal
entropy. In the next section, we will march on to a deeperstatistical
analysisof this information.

Coverage. The most important information that this table brings
is in the penultimate line, which shows the coverage of our catalog.
We see that79.5% of all classes inSun1.4.2 are cataloged. The col-
lection with least coverage isAnt, but even for it, one in two classes
is cataloged. The total coverage of the (pruned) corpus is 74.9%.
The fluctuation in coverage level is not very great—the standard
deviation (penultimate column) is 11%.

CONCLUSION 7.1. Three out of four classes match at least one
micro pattern in the catalog.

The above, just as all subsequent conclusions, refer to what
can be observed in our corpus. There is still a need for ap-
propriate statistical tools to support an extrapolation of such
statements to e.g., the universe of allJAVA programs.

Prevalence. In examining Tab. 4 in greater detail, we see that the
most prevalent group is this of the inheritors micro patterns. About
35% of all classes not only inherit from a parent, they also adhere
to a specific, particularly restrictive style of inheritance. The most
common micro pattern, in this category and overall, isImplementor
which occurs in about 21% of all classes. This finding indicates
wide spread use of the technique of separating type and implemen-
tation, by placing the implementation in a concrete class.

Also large isOverrider, which occurs in about 11% of all classes.
A large group is also that of classes with degenerate state, whose

total prevalence is about 24%.

CONCLUSION 7.2. One in four classes is degenerate in respect
to the data it maintains.

In this group, the largest pattern isStateless (8.9% prevalence),
which is unique in that it has no instance fields.

The base class category is also quite significant, occupying about
15% of all classes. The largest pattern there isPure Type with 10.6%
prevalence.

It is interesting to see that theSink, a class which essentially does
not communicate with any other class, is also very frequent, with
prevalence of 13.9%.

Together, the five leading patterns (Implementor, Sink, Overrider,
Pure Type andStateless) describe 23,848 classes, which are 58% of
the classes in our pruned corpus.

CONCLUSION 7.3. The majority of classes are cataloged by one
of the five leading patterns.

Separation Power. Conc. 7.3 does not mean that we can make
do with only five patterns. The other patterns in the catalog con-
tribute to the information it provides. One of the reasons is that the
micro patterns are not mutually exclusive. There are classes in the
corpus which match more than one micro pattern. Fig. 3 depicts the
number of classes in the pruned corpus for each multiplicity level.

We see that 31% of the classes matched a single pattern, 30%
matched two patterns, 13% matched three patterns. Out of the total
41,443 classes in this corpus there was also a significant number of
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Designator 0.2% 0.1% 0.2% 0.0% 0.0% 0.2% 0.1% 0.3% 0.3% 0.2% 0.2% 0.2% 0.0% 0.3% 0.1% 0.05
Taxonomy 4.4% 2.7% 3.2% 1.4% 1.2% 2.6% 3.8% 3.2% 3.5% 3.5% 2.9% 3.2% 1.2% 4.4% 1.1% 0.13
Joiner 0.7% 1.8% 0.0% 0.0% 0.0% 0.6% 0.3% 2.2% 0.9% 1.2% 0.7% 0.6% 0.0% 2.2% 0.8% 0.09
Pool 1.9% 1.0% 4.6% 1.7% 1.0% 1.5% 1.7% 2.9% 2.7% 2.3% 2.1% 1.7% 1.0% 4.6% 1.1% 0.15
Sink 20.6% 14.0% 10.7% 14.3% 9.0% 12.1% 11.3% 12.7% 13.5% 13.9% 13.1% 12.7% 9.0% 20.6% 3.3% 0.67
Record 0.4% 0.3% 0.2% 0.2% 0.6% 0.3% 0.4% 1.1% 1.5% 0.8% 0.6% 0.4% 0.2% 1.5% 0.5% 0.08
Data Manager 1.8% 0.2% 1.2% 4.0% 1.5% 1.7% 1.9% 1.8% 2.4% 1.8% 1.8% 1.8% 0.2% 4.0% 1.0% 0.04
Function Pointer 2.0% 0.9% 1.8% 1.2% 1.2% 2.8% 1.7% 1.7% 1.0% 1.6% 1.6% 1.7% 0.9% 2.8% 0.6% 0.11
Function Object 7.7% 0.8% 9.1% 1.4% 24.1% 2.4% 6.3% 4.2% 5.2% 5.5% 6.8% 5.2% 0.8% 24.1% 7.1% 0.23
Cobol Like 0.4% 0.6% 0.5% 0.7% 0.1% 1.0% 0.5% 0.7% 0.4% 0.5% 0.5% 0.5% 0.1% 1.0% 0.2% 0.07
Stateless 9.8% 14.6% 7.6% 5.7% 6.1% 10.3% 6.8% 9.6% 6.8% 8.9% 8.6% 7.6% 5.7% 14.6% 2.8% 0.38
Common State 2.4% 0.3% 2.1% 0.2% 3.4% 1.3% 1.8% 7.1% 3.6% 3.8% 2.5% 2.1% 0.2% 7.1% 2.1% 0.14
Canopy 9.8% 3.9% 11.0% 4.5% 26.5% 4.6% 10.3% 6.3% 4.5% 7.7% 9.0% 6.3% 3.9% 26.5% 7.1% 0.28
Immutable 7.6% 5.6% 7.0% 2.1% 12.0% 4.0% 6.2% 6.1% 4.6% 6.1% 6.1% 6.1% 2.1% 12.0% 2.7% 0.28
Box 4.6% 14.5% 3.3% 3.1% 1.3% 8.6% 2.5% 7.8% 5.1% 6.0% 5.6% 4.6% 1.3% 14.5% 4.1% 0.22
Compound Box 6.0% 5.1% 3.6% 10.0% 5.8% 3.1% 3.8% 3.7% 4.4% 4.4% 5.0% 4.4% 3.1% 10.0% 2.1% 0.24
Implementor 26.0% 10.5% 17.8% 17.1% 37.1% 12.7% 22.1% 23.1% 15.8% 21.3% 20.2% 17.8% 10.5% 37.1% 8.1% 0.63
Overrider 12.4% 4.1% 8.1% 4.0% 23.1% 20.2% 16.8% 7.0% 9.4% 10.8% 11.7% 9.4% 4.0% 23.1% 6.9% 0.23
Extender 4.3% 1.6% 5.3% 4.8% 4.9% 5.9% 4.5% 4.2% 4.2% 4.2% 4.4% 4.5% 1.6% 5.9% 1.2% 0.23
Outline 1.8% 0.2% 1.1% 1.0% 0.4% 0.3% 1.3% 0.6% 0.6% 0.9% 0.8% 0.6% 0.2% 1.8% 0.5% 0.09
Trait 1.3% 0.3% 0.8% 0.2% 0.0% 0.7% 0.8% 0.4% 0.6% 0.7% 0.6% 0.6% 0.0% 1.3% 0.4% 0.08
State Machine 1.5% 1.8% 1.0% 0.7% 0.3% 1.7% 1.7% 2.1% 1.8% 1.8% 1.4% 1.7% 0.3% 2.1% 0.6% 0.09
Pure Type 7.7% 20.5% 6.7% 3.1% 2.5% 5.6% 11.9% 11.2% 10.1% 10.6% 8.8% 7.7% 2.5% 20.5% 5.5% 0.15
Augmented Type 0.6% 0.0% 0.3% 0.5% 0.0% 0.1% 0.2% 0.4% 1.0% 0.5% 0.4% 0.3% 0.0% 1.0% 0.3% 0.06
Pseudo Class 0.7% 1.6% 0.3% 0.0% 0.0% 0.3% 0.3% 0.2% 0.4% 0.4% 0.4% 0.3% 0.0% 1.6% 0.5% 0.06
Sampler 1.2% 3.5% 1.0% 0.0% 0.6% 1.7% 1.0% 0.5% 1.0% 1.0% 1.2% 1.0% 0.0% 3.5% 1.0% 0.10
Restricted Creation 2.3% 0.5% 1.0% 0.0% 0.4% 1.3% 1.5% 1.7% 0.7% 1.5% 1.0% 1.0% 0.0% 2.3% 0.7% 0.14

Coverage 79.5% 79.4% 64.3% 48.0% 83.7% 67.3% 76.9% 76.2% 65.7% 74.9% 71.2% 76.2% 48.0% 83.7% 11.1%

Entropy 5.27 4.32 4.27 3.32 4.51 4.22 4.74 4.96 4.83 5.08 4.50 4.51 3.32 5.27 0.56

Table 4: The prevalence, coverage, entropy and marginal entropy of micro patterns in the collections of the pruned corpus.
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Figure 3: Multiplicity of pattern classification in the classes of
the pruned corpus.

classes which matched more than three patterns: 558 classes with
four patterns, 89 with five patterns. There were even 18 classes
which matched six patterns!

It is interesting to examine some of the classes with multiple clas-
sifications. There were 12 classes which matched the same six pat-
terns:Canopy, Restricted Creation, Overrider, Sink, Function Object,
and Data Manager. All of these classes are exceedingly similar:
they all have a series of pre made instances represented aspublic
static fields, aprivate constructor which accepts the name of
the created instance (passed as aString ), aprivate variable to
store that name, and atoString() method that returns the name
of that instance. Here is one of these for example.

package javax.xml.rpc;

public class ParameterMode {
public static final ParameterMode

IN = new ParameterMode( “ IN ” ),
INOUT = new ParameterMode( “ INOUT” ),
OUT = new ParameterMode( “OUT” );

private String mode;
private ParameterMode(String mode) {

this .mode = mode; }
public String toString() {

return mode; }
}
Interestingly, there is nothing else in all these classes (except for
an array of the samples, in the case that the number of samples is
large.)

There are 30 classes which matchJoiner, Pure Type, Stateless
andSink but no other patterns. Here is one of them for example.

package org.freehep.swing.graphics;

public abstract class AbstractPanelArtist
implements PanelArtist,

GraphicalSelectionListener {
public AbstractPanelArtist() { }

}
Again, all 30 classes are very similar in structure. Theyjoin together
several empty classes or interfaces, thus helping in enriching the
classification hierarchy. In the process, they add a single empty
method.

The examples we checked indicated that a multiple patterns match
is very precise, yet very narrow. We can think of each pattern com-
bination as anew pattern which is more focused than any of its
components.

We analyzed the classes where multiple patterns were detected,
and found out that there are more than 600 different combinations of
multiple patterns (when a combination is a set of patterns detected
in a single class). While this number merely provides some vague



intuition to the power of the catalog, the entropy measurement can
formally describe the catalog’s separation power, or: the amount of
information that the catalog provides on average. Examining the
last row of Tab. 4, we learn that the entropy fluctuates between 4.28
and 5.27. By raising these values to the power of two, we obtain,

CONCLUSION 7.4. The separation power of the catalog is equiv-
alent to that of a partitioning into 19–39 equal and disjoint sets.

Marginal Entropy. The last column of Tab. 4 gives the mar-
ginal entropy of each of the micro patterns with respect to the entire
catalog and all classes in the pruned corpus. In other words, this
column specifies the “additional separation power” or added infor-
mation, when classes which were already matched by the rest of the
catalog are matched against this micro pattern.

We see that the marginal entropy of none of the patterns is 0.
Therefore, we can state:

CONCLUSION 7.5. All patterns contribute to the separation power
of the catalog.

In examining the last column we also find that patterns with high
prevalence usually exhibit higher marginal entropy, and vice versa,
patterns with low prevalence tend to have low marginal entropy.
Maximal marginal entropy is achieved bySink; Implementor fol-
lows. In other words, we may argue thatSink contributes the most
to the separation power of the catalog. This is in spite of the fact
that there are patterns with higher prevalence. In a sense,Sink is
more “independent” of the rest of the catalog than other patterns.

The sum of marginal entropies is 5.02, while the entropy of the
entire catalog stands at a slightly higher, 5.06. This finding is the
basis of our claim that the information brought by the catalog is
greater than the sum of its parts.

Variety in Prevalence. Following the table body, there are six
columns that give various statistics on the distribution of preva-
lence of each pattern in the different collections. The first of these
columns gives the prevalence of each pattern in the entire (pruned)
corpus, i.e., a weighted average of the preceding columns. The two
following columns give the (straight) average and median preva-
lence. Note that in the majority of micro patterns, these three typical
values are close to each other. (This situation is typical to symmet-
rical and normal distributions.)

The next three columns are indicative of the variety in prevalence,
giving its minimal and maximal values, as well as the standard de-
viation. Examining these, we can make the following qualitative
conclusion:

CONCLUSION 7.6. There is a large variety in the prevalence of
patterns in different collections.

For example,Function Object occurs in 24.1% of all classes in
JEdit (probably since it is used to realize theCOMMAND pattern
in this graphic environment), but only in 0.8% of the classes in the
Scala compiler. On the other hand, 20.5% ofScala classes match
thePure Type pattern, while the prevalence of this pattern inJEdit
is only 2.5%. InJEdit, 37.1% of all classes are instances ofImple-
mentor, while only 10.5% ofScala classes matchImplementor.

8. Prevalence Differences and Purposefulness
The previous section ended with Conc. 7.6 making the qualitative

statement that differences between prevalence levels are “large”. In
this section, we will make this statement more precise by showing
that these differences arestatistically significant. Concretely, we

prove that random fluctuations of prevalence are improbable to gen-
erate differences of this magnitude. Thus, we will infer that there
exists a non-random mechanism which governs the extent by which
patterns are used in different collection.

The statistical validation of Conc. 7.6 can be taken as supporting
evidence to our claim thatthe patterns in the catalog are purpose-
ful. One such purpose could be that different software collections
serve different needs, and therefore employ different patterns at dif-
ferent levels. Yet another explanation of this non-random process is
the difference in programming style and practice between different
vendors and their various software teams. We shall discuss these
possible explanations in greater detail in the following section.

Statistical Inference. The statistical inference starts by making
a null hypothesisH0, by whichpatterns are a random property of
JAVA code. According to this hypothesis, each pattern has some
fixed (yet unknown) probability of occurring in the code, regardless
of context or programming style. The number of occurrences of a
certain pattern in a collection ofn classes is therefore the sum of
the n independent random binary variables, one for each class in
the collection. The binary variable of a class is 1 precisely when
the pattern occurs in that class. If the null hypothesis is true, then
changes in prevalence of the pattern across different collections are
due to normal fluctuations of then-sum.

Our objective here is torejectthe null hypothesis. As usual in sta-
tistical inference, we assumeH0 and check the probability that such
changes occur under this assumption. More specifically, letH0(p)
denote the null hypothesis for a patternp. For each patternp, we
examine the values found in the corresponding row of Tab. 4, i.e,
the prevalence level of this pattern in the different collections, and
check whether the variety in these can be explained byH0(p).

For example, the prevalence of the rarest pattern,Designator, is
distributed as follows:0.0% in two of the collections,0.1% in two
collections,0.2% in three collections, and0.3% in the three re-
maining collections. Are these rather tiny differences which occur
in such minuscule prevalence values, meaningful at all?

A precise answer to this question is given by the application of
the standardχ2-test13 to this row. This test checks whether ran-
dom fluctuations in prevalence values can give rise, with reasonable
probability, to these differences.

Perhaps surprisingly, the test shows that null hypothesis is re-
jected with confidence level of more than99%, i.e., α < 0.01.
(More precisely, the confidence level withDesignator 99.75%.) In
other words, the probability that the changes in the prevalence level
of Designator can be explained byH0(p) is less than0.01.

In applying the test to each of the patterns we find that hypoth-
esisH0(p) is rejected with confidence level of99.9%, i.e., α <
0.001 for all the patterns in the collection, with only two excep-
tions: Designator, for which the confidence level is99.75%, and
Cobol Like, in which the confidence level is 96%.

At the usual95% confidence level employed in statistical infer-
ence, the differences in prevalence level ofCobol Like are statisti-
cally significant. It is tempting to declare thatH0(p) is rejected for
all p. We shall however use a fixed confidence level of99%, i.e.,
declare that the null hypothesis is rejected only ifα < 0.01. The
following argument explains why.

However, even if the null hypothesis is true, it isexpected
that in about 5% of all cases, the95% of this confidence
level will be reached. Since we used a battery of 27 tests for
all H0(p), the expected number of times in which this confi-
dence level is reached, is greater than 1.

13Read “Chi-squared-test”.



CONCLUSION 8.1. With the exception ofCobol Like, changes
in prevalence of each of the micro patterns in the collections of the
pruned corpus are significant.

Pair-wise Separation. The above conclusion does not provide
means ofunderstandingthe nature of the changes. It merely says
that these changes as a whole are (statistically) significant. Further-
more, the rejection ofH0(p) does not mean thatevery change in
prevalence level of each pattern in any two collectionsis signifi-
cant.

Conc. 8.1 only says thatnot all changes in the collections are
a matter of coincidence. Despite the great variety, some patterns
exhibit the same prevalence level in different collections. For ex-
ample, the prevalence ofState Machine in Tomcat andPoseidon
is almost the same (round1.7%); its (rounded) prevalence inScala
andShared is 1.8%. Is each of these differences significant?

Let H0[c1, c2](p) be the null hypothesis that the prevalence of
a patternp in collectionsc1 and c2 is the same. To check this
hypothesis, we apply aχ2-test to determine whether the differ-
ence in proportions (i.e., a “single degree freedom”, inχ2-test) in
the two collections is significant. The test result is that hypothe-
sisH0[Tomcat, Poseidon])(State Machine) cannot be rejected by
the test. The test similarly fails to reject the hypothesis

H0[Scala, Shared](State Machine).

We say that patternp separatesthe collectionsc1 andc2 if

H0[c1, c2)](p)

is rejected. The application of aχ2-test gives us an effective means
for concentrating only on the significant differences in prevalence
levels.

Corpus Separation Index. Let us now define a metric of the
average extent by which a pattern distinguishes between different
collections.

DEFINITION 5. Assume some fixed confidence level. LetC be
a software corpus. Letp be a pattern. Then, the notationΥ(p, C)
(or for short justΥ(p) whenC is clear from context), stands for the
separation index ofp (with respect toC) is the fraction of rejected
null hypothesesH0[c1, c2](p) (at the fixed confidence level) out of
all such hypotheses wherec1 andc2 vary overC, c1 6= c2.

The separation index becomes useful because theχ2-test is sensi-
tive to outliers: Suppose that the prevalence of a patternp in a single
collectionc ∈ C is distant from the average prevalence, while the
prevalence in the other collections inC is very close to the average
prevalence. Then, the test will reject the null hypothesisH0(p). In
contrast,H0[c1, c2](p) will be rejected only ifc1 = c or c2 = c.

Low separation index of a pattern indicates that the pattern preva-
lence is more stable in different collections.

Fig. 4 shows the separation index of the patterns in the catalog
with respect to the pruned corpus (black columns) and the JRE cor-
pus (white columns).

Not surprisingly, the minimal value is that ofCobol Like, which
separates only2 out of the36 pairs of the pruned corpusPruned

Υ(Cobol Like, Pruned) = 5.6%.

It is followed byΥ(Designator) = 8.33%. The highest separation
index,89%, is achieved byFunction Object, where the second high-
est value isΥ(Overrider) = 86%. The median is 44%, while the
average separation index is47%.

CONCLUSION 8.2. The difference in prevalence levels between
two collections is significant in one out of two cases.
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Figure 4: The separation index of the patterns with respect
to the pruned corpus and the different implementations of the
JRE (α < 0.01).

Conclusions Conc. 8.1 and Conc. 8.2 together are the statistically
sound counterpart of the qualitative statement in Conc. 7.6.

9. Intermediate Discussion
The previous section established the significance of the variety

in prevalence level of the same pattern in different collections. In
this section, we shall discuss several ways of interpreting this sig-
nificance.

We first note that the corpus size makes it possible to establish
the significance of even relatively small differences in prevalence
levels. But, the nature of the statistical tests we employ is that they
take an appropriate account of both the corpus size but also of the
expected prevalence. Even with large data sets, not every difference
in prevalence level is significant:

• Consider the difference in prevalence level of an individual
pattern between two specific collections. Fig. 4 shows that
in only about half of the cases there was significance to the
difference.

• As mentioned in Sec. 6 we tried to expand the corpus with
three other ports of Sun’s implementation of the JRE, due to
IBM, HP, and BEA. As it turned out, the differences in preva-
lence level of these ports were not statistically significant.

We can think of at least five different phenomena which can ex-
plain, alone or together, the findings of Sec. 8

1. Requirement Variety.The different collections serve different
needs, which call for different patterns.

2. Style Variety.The different collections are implemented by
different vendors employing different programming policies,
styles, and individuals, all reflected by patterns prevalence.

3. Replication.We know that programmers tend, or are at least
encouraged, to reuse both design and code. Programmers
may copy classes, changing only a few lines of codes, instead
of factoring out similarities14. If this happens often, the num-
ber of “independent” classes in a collection is smaller than the
actual number of classes. A random fluctuation in a pattern
prevalence is amplified by this replication, and interpreted to
be significant even if it is not so.

14In some cases, code duplication cannot be avoided due to the ab-
sence of advanced abstraction mechanisms, (such as multiple inher-
itance, mixins, anonymous functions, and traits) in the language.



4. Population ContaminationOur experiments cannot tell a dif-
ference in prevalence level is a result of a moderate global
change to the entire population, or of an accentuated change
to a subpopulation.

To understand this better, let us assume thatCommon State
occurs naturally inJAVA code with probability of 7%. Then,
if we take a set of10, 000 classes, about700 of these will
be aCommon State. Finding instead767 classes, is, so tells
us theχ2-test, statistically significant. What the test fails to
say is whether the increase in the number of occurrences is
a result an increased global tendency to useCommon State,
or of (say) having a sup-population of 350 classes, whose
specific domain is such that the prevalence ofCommon State
is 26%.

5. Dormant Abstraction. It could be the case that the micro-
patterns found here are a reflection of higher level,deeppat-
terns which are still not known to us. The difference in preva-
lence of micro patterns could be a reflection of difference in
prevalence of the “deep patterns”, which capture the “true”
differences between collections.

We would like to attribute changes in the use of patterns primar-
ily to requirement variety, and only then to style variety. But, these
changes could be a result of code replication, or population conta-
mination. These two explanations represent in fact the two faces of
the same phenomena, i.e., that different classes are not independent
of each other. Finally, dormant abstraction may mean that we are
examining the wrong patterns.

Statistical inference cannot positivelyconfirm any of these ex-
planations. It can however, be employed for the rejection of one or
more such conjectures, and for estimating the relative contribution
of the factors which are not rejected. Such an investigations requires
carefully designed experiments, and lies out of scope of this work.

In an initial experimentation with a bunch of “pseudo-patterns”,
which are not expected to carry any purpose, we made some inter-
esting discoveries.

• Pseudo-patterns computed by hashing the class pool into a
single bit showed, at times, significance, although not as strong
as we found for micro patterns. This finding indicates that the
extent of code replication in the corpus is small, but probably
measurable.

• The statistical tests can trace in the corpus more than de-
sign information. For example, the use of a code obfuscator
in parts ofPoseidon, generated short named classes, which
made significant changes to the prevalence of a “non-sense”
pattern occurring whenever the length of the class name is
a prime number. The dormant abstraction of naming con-
vention could be detected by significant changes to the same
“pattern”.

• We were able to find dormant abstraction, of (so we guess)
our patterns, in examining classes with exactly one method,
and no instance fields. In other meaningless patterns, e.g.,
requiring that a class has precisely two methods and two in-
stance fields, significance was found.

10. The Evolution of Software Collections
We now turn to the quest of checking the persistence of micro

patterns across different implementations of the same design, and
in the course of the software life cycle. To this end we consider the
seven different implementations of the JRE as discussed in Sec. 6.

10.1 Prevalence in JRE Implementations
Tab. 5 is structured similarly to Tab. 4 except that in Tab. 5 we

compare the micro pattern prevalence in the seven implementations
of the JRE, i.e., in the corpus defined by

JRE = {Kaffe1.1, Kaffe1.1.4, Sun1.1, Sun1.2,

Sun1.3, Sun1.4.1, Sun1.4.2}
Comparing the two tables we see that the values in the average,

total, and median lines in Tab. 5 are close, just as they are in Tab. 4.
In comparing the standard deviation column (σ) in the two ta-

bles, we see that the variety in coverage level and entropy is much
smaller in the related collections (Tab. 5) than the variety in the re-
lated collections (Tab. 4). For the majority of patterns (18 out of
the 27), the variety in prevalence level in Tab. 5 is smaller than the
variety in Tab. 5.

The variety of four patterns is about the same in both corpora.
Only five patterns,Designator, Taxonomy, State Machine,
Immutable and Sink showed a greater variety in the JRE-
collections than in the unrelated collections.

Examining these patterns, we see that there was a large drop
in their prevalence level with the progress of JRE implemen-
tations.

The drop inImmutable is explained by a change in the root of
the exceptions hierarchy of JRE,Throwable , which broke
the immutability of all of the classes in it.

The drop inDesignator, Taxonomy, State Machine and
Sink, is not so much in relative numbers but rather due to
the fact that the development of new branches of the standard
library did not make much new use of these patterns. In par-
ticular, the introduction of the fairly large and complex Swing
library in Sun1.2, has induced a corresponding decrease in the
ratio ofSink classes.

We can therefore make the following qualitative conclusion:

CONCLUSION 10.1. Pattern prevalence tends to be the same in
software collections which serve similar purposes, independent of
the size of the collection.

Note that the two most largest differences are 19% inImplemen-
tor, betweenSun1.1 and Sun1.2, and an 11% drop inImmutable
betweenSun1.3 andSun1.4.1. The first difference can be attributed
to the introduction of large interface-based libraries inSun1.2 (such
as theSwinglibrary and thesun.java2d. * packages). The lat-
ter difference is, as explained above, due to the change of class
Throwable in Sun1.4.1.

To appreciate the greater similarity in prevalence values, we can
recheck the null hypothesisH0[p]. This time with respect to the
collections in theJRE corpus. As it turns out, the hypothesis cannot
be rejected as often as in the pruned corpus. The difference in the
prevalence levels ofCobol Like were insignificant here just as in the
pruned corpus, but there were five additional patterns for which the
differences in prevalence levels not significant:Outline, Augmented
Type, Pseudo Class, Pool, Stateless, andRecord.

10.2 Proximity of JRE Implementations
The finding thatH0[p] is rejected less often with JRE implemen-

tations, supports the qualitative statement in Conc. 10.1. But, in
order to make the conclusion more precise, we need a sound statisti-
cal method of comparing the variation in pattern prevalence among
the related collections, i.e., corpusJRE, comprising the different
implementations of the JRE, and unrelated collections, i.e., corpus
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Designator 1.3% 0.8% 0.8% 0.4% 0.4% 0.3% 0.2% 0.4% 0.6% 0.4% 0.2% 1.3% 0.4%
Taxonomy 11.0% 5.6% 13.8% 6.7% 5.8% 5.1% 4.4% 5.9% 7.5% 5.8% 4.4% 13.8% 3.5%
Joiner 0.4% 0.3% 0.0% 0.8% 0.9% 1.2% 0.7% 0.8% 0.6% 0.7% 0.0% 1.2% 0.4%
Pool 1.9% 1.9% 1.4% 1.6% 1.8% 2.3% 1.9% 1.9% 1.8% 1.9% 1.4% 2.3% 0.3%
Sink 21.9% 27.5% 23.5% 17.0% 17.6% 17.3% 20.6% 19.4% 20.8% 20.6% 17.0% 27.5% 3.9%
Record 0.2% 0.2% 0.5% 0.5% 0.6% 0.6% 0.4% 0.5% 0.4% 0.5% 0.2% 0.6% 0.2%
Data Manager 2.7% 2.8% 2.3% 1.5% 1.9% 1.9% 1.8% 1.9% 2.1% 1.9% 1.5% 2.8% 0.5%
Function Pointer 1.0% 1.1% 0.5% 2.1% 1.2% 1.7% 2.0% 1.6% 1.4% 1.2% 0.5% 2.1% 0.6%
Function Object 1.1% 1.2% 1.8% 8.0% 7.7% 6.9% 7.7% 6.5% 4.9% 6.9% 1.1% 8.0% 3.3%
Cobol Like 0.9% 0.6% 0.5% 0.4% 0.4% 0.4% 0.4% 0.4% 0.5% 0.4% 0.4% 0.9% 0.2%
Stateless 9.0% 8.9% 7.0% 9.3% 8.6% 9.5% 9.8% 9.2% 8.9% 9.0% 7.0% 9.8% 0.9%
Common State 2.0% 1.3% 1.9% 1.4% 2.8% 3.6% 2.4% 2.5% 2.2% 2.0% 1.3% 3.6% 0.8%
Canopy 5.1% 4.8% 2.9% 10.2% 9.1% 9.1% 9.8% 8.7% 7.3% 9.1% 2.9% 10.2% 2.9%
Immutable 13.3% 5.1% 15.1% 17.6% 16.7% 6.8% 7.6% 10.7% 11.7% 13.3% 5.1% 17.6% 5.2%
Box 8.0% 4.1% 4.7% 4.5% 4.6% 5.3% 4.6% 4.9% 5.1% 4.6% 4.1% 8.0% 1.3%
Compound Box 7.0% 6.0% 8.4% 5.4% 5.5% 5.7% 6.0% 5.9% 6.3% 6.0% 5.4% 8.4% 1.1%
Implementor 9.7% 17.0% 9.3% 27.6% 27.1% 21.5% 26.0% 23.2% 19.7% 21.5% 9.3% 27.6% 7.9%
Overrider 6.6% 5.7% 7.7% 9.8% 9.2% 12.3% 12.4% 10.5% 9.1% 9.2% 5.7% 12.4% 2.6%
Extender 6.5% 4.9% 4.5% 4.1% 4.1% 4.1% 4.3% 4.3% 4.6% 4.3% 4.1% 6.5% 0.9%
Outline 1.9% 2.8% 2.3% 1.7% 1.7% 1.8% 1.8% 1.9% 2.0% 1.8% 1.7% 2.8% 0.4%
Trait 1.6% 2.3% 1.4% 1.9% 1.9% 1.3% 1.3% 1.6% 1.7% 1.6% 1.3% 2.3% 0.4%
State Machine 1.6% 3.1% 2.5% 1.3% 1.4% 1.8% 1.5% 1.7% 1.9% 1.6% 1.3% 3.1% 0.7%
Pure Type 10.1% 14.9% 12.4% 8.4% 8.7% 9.5% 7.7% 9.3% 10.2% 9.5% 7.7% 14.9% 2.6%
Augmented Type 0.9% 1.3% 1.0% 0.6% 0.7% 0.7% 0.6% 0.7% 0.8% 0.7% 0.6% 1.3% 0.3%
Pseudo Class 1.1% 1.2% 0.5% 1.1% 1.0% 0.8% 0.7% 0.9% 0.9% 1.0% 0.5% 1.2% 0.3%
Sampler 2.5% 1.2% 1.6% 1.3% 1.2% 1.1% 1.2% 1.3% 1.5% 1.2% 1.1% 2.5% 0.5%
Restricted Creation 2.0% 2.5% 1.3% 1.2% 1.8% 2.2% 2.3% 2.0% 1.9% 2.0% 1.2% 2.5% 0.5%

Coverage 74.8% 82.9% 73.3% 79.5% 80.3% 79.5% 79.5% 79.5% 78.5% 79.5% 73.3% 82.9% 3.3%

Entropy 4.98 5.08 4.68 5.17 5.25 5.25 5.27 5.34 5.10 5.17 4.68 5.27 0.21

Table 5: The prevalence, coverage and entropy of micro patterns in different implementations of the JRE.

Pruned. To this end, we shall use theseparation indexof a pattern
(Def. 5).

We expect that patterns will distinguish between more pairs of
collections in the unrelated applications. Conversely, since we be-
lieve that the collections inJRE are relatively similar to each other,
we expect a lesser ability of patterns to distinguish between these
collections.

Fig. 4 helps in visualizing the meaning of this expectation. The
black columns in the figure, represent the separation indices of the
patterns with respect to the pruned corpus, while the white columns
represent the separation indices of the same patterns with respect to
the JRE implementations. The question is therefore: “Are the black
columns significantly taller than the white columns?”

We know that the average separation index with respect to the
pruned corpus is47%, while the average with respect to the JRE’s
is 33%. But we cannot tell whether this difference of14% is signif-
icant without determining the distribution of the separation index.

Let H′0[Pruned, JRE] be the null hypothesis that the patterns
have the same ability to distinguish between collections in both cor-
pora. Then, under this assumption, the separation index will have
the same (unknown) distribution in both sets, and the event

Υ(p, Pruned) < Υ(p, JRE) (2)

will be just as likely as the event

Υ(p, Pruned) > Υ(p, JRE). (3)

We therefore have thatH′0[Pruned, JRE] implies thatne, the num-
ber of patterns in which (2) holds follows a binomial distribution
of 27 tosses of a balanced coin.

Doing the count in Fig. 4 we obtainne = 7. A standard (one-
sided) test of this distribution reveals that the hypothesis

H′0[Pruned, JRE]

is rejected at confidence level99%.
We therefore obtain the following statistically sound counterpart

of Conc. 10.1.

CONCLUSION 10.2. With high confidence value, micro patterns
tend to have more similar prevalence values in different implemen-
tations of the JRE than the pruned corpus.

10.3 Progressive JRE Implementations
We can employ the same statistical test to check whether pat-

terns tend to exhibit greater similarity in their prevalence levels in
progress versions of the JRE, than in less related versions. To this
end we used a smaller corpusSUN, comprising the four last ver-
sions of Sun’s JRE implementations, i.e.,

SUN = {Sun1.2, Sun1.3, Sun1.4.1, Sun1.4.2},
and compared the separation indices with respect to it, with the sep-
aration indices with respect to the entire corpus ofJREs .

At it turns out, there were 20 patternsp in which

Υ(p, SUN) < Υ(p, JRE). (4)

By checking the same binomial distribution as before, we obtain
that hypothesisH′0[SUN, JRE] is rejected at the 99% confidence
level.
We can thus strengthen Conc. 10.2 by the following.

CONCLUSION 10.3. With high confidence level, progressive ver-
sions of the JRE, tend to exhibit more similar pattern prevalence
levels than the entire range of implementations of the JRE.

It is even possible to use the patterns catalog to examine the prox-
imity of individual JRE implementations. To do so, consider the
random variable representing the prevalence level of each of the
patterns. Tab. 6 presents the values ofr(c1, c2), the Pearson cor-
relation between the values of this variable in all pairsc1, c2 of
implementations of the JRE.

A qualitative inspection of the table reveals that all correlation
values are high. The smallest correlation,0.69 is between the first
and the last of Sun’s implementation of the JRE.

Examining the last row of the table, we see that the correlation of
Sun1.4.2 with prior editions is increasing with version number. By



Kaffe1.1Kaffe1.1.4Sun1.1Sun1.2Sun1.3Sun1.4.1Sun1.4.2

Kaffe1.1 1.00 0.87 0.97 0.75 0.76 0.76 0.74
Kaffe1.1.4 0.87 1.00 0.85 0.76 0.78 0.85 0.85
Sun1.1 0.97 0.85 1.00 0.73 0.74 0.72 0.69
Sun1.2 0.75 0.76 0.73 1.00 1.00 0.93 0.94
Sun1.3 0.76 0.78 0.74 1.00 1.00 0.94 0.95
Sun1.4.1 0.76 0.85 0.72 0.93 0.94 1.00 0.99
Sun1.4.2 0.74 0.85 0.69 0.94 0.95 0.99 1.00

Table 6: The Pearson correlation between patterns prevalence
level of patterns in different implementations of the JRE; all
values are significant at theα < 0.01 confidence level.

applying the standard technique of Fisher’s transformation, we can
even check whether these increases are statistically significant.

As it turns out, the increase fromr(Sun1.4.2, Sun1.1) = 0.69
to r(Sun1.4.2, Sun1.2) = 0.94 is significant, and so is the increase
from r(Sun1.4.2, Sun1.3) = 0.95 to r(Sun1.4.2, Sun1.4.1) = 0.99.

On the other hand, the difference betweenr(Sun1.4.2, Sun1.2) =
0.94 andr(Sun1.4.2, Sun1.3) = 0.95 is statistically insignificant.
These findings strengthen Conc. 10.3.

10.4 Programming Style vs. Specification
Tab. 6 includes an interesting case which can be used to compare

the contribution to the choice of micro pattern of programming style
with that of software specification.

Consider collectionsSun1.1 andKaffe1.1 which represent two in-
dependent implementations of almost identical specifications. We
see a very high correlation value,r(Kaffe1.1, Sun1.1) = 0.97, be-
tween the two collections.

Let us now examine the correlation values ofr(Sun1.2, Sun1.1)
andr(Kaffe1.1, Kaffe1.1.4) which record similarity in pattern preva-
lence in cases that the specification changed (mostly by expanded
functionality), but the programming style and Vendor culture pre-
sumably did not change so much. We have:

r(Kaffe1.1, Kaffe1.1.4) = 0.87 < r(Kaffe1.1, Sun1.1)

r(Sun1.2, Sun1.1) = 0.73 < r(Kaffe1.1, Sun1.1)
(5)

Moreover, in applying the Fisher transformation to the respectiver
values, we find that both inequalities in (5) are statically significant.
The finding in this test case suggests that micro pattern application
tends to be determined by the specification more than the program-
ming style.

Comments. First, note that the conclusions in this section do
not mean that micro patterns are the only means, or even the most
effective tool, for determining proximity of software collections.

We expect that many other metrics, including metrics derived
from non-purposeful patterns (similar to the pseudo patterns men-
tioned in Sec. 9) will exhibit similar distinguishing capabilities.
What we have established is that micro patterns are not a random
property of code, and that its behavior in the course of changes
in specification is in accordance with our natural understanding of
these.

Second, note that the single test case presented in Sec. 10.4 in-
dicates that specification has more impact than style, but it cannot
prove such a point. It is difficult to run a controlled experiment of
this sort. The costs of software development make the independent
implementation of the same specification a true rarity.

Preservation of Prevalence Level. It is tempting to think that
conclusions 10.1–10.3 are a result of the fact that the same classes
occur in all implementations collections. This is not true, since the
numbers of classes in each such implementation is very different;
the series of Sun’s JRE version exhibits dramatic increase in the

number of classes, mostly due to considerable functionality added
at each new version. Theratio of classes which use certain pat-
terns is preserved. This means that theaddedfunctionality is im-
plemented in a fashion which is similar to the existing functionality.

Independent Implementation of the Same Class.It turns out
also that the different implementations of the same class are not
necessarily with the same pattern. To measure the tendency of im-
plementing a specification with the same pattern, we considered for
each pair of implementations, the Pearson correlation between the
events of implementing a specific class with the same pattern in the
two implementations. A total of27 · 7 · 6/2 = 567 correlation
values were thus computed. (Except for the small number of excep-
tions discussed below, all these values were significant at the 99.9%
confidence level or higher.)

As expected, there were no cases of negative correlation. More-
over, in 90% of all cases, the correlation was greater than 0.6; in
46% of the cases, it was greater than 0.9. Since the implementation
was carried by two independent vendors, we can conclude.

CONCLUSION 10.4. Independent implementations of the same
specification have a strong tendency to use the same pattern.

It should be stated however that in only 65 cases, the correlation
was 1, i.e., it was the case that a class used a specific pattern in one
implementation if and only if it used the same pattern in the other
implementation.

Of course, we do not know if all cases in which implementations
of the same classdid not chose the same patterns are a result of
consciousness design decision. These cases could also be an artifact
of inaccuracies of our automatic pattern detection tool or of our
pattern definition.

It may take a moment’s thought to be convinced that Conc. 10.1
and Conc. 10.4 do not contradict Conc. 8.1. What we have in fact
is the following observation:

CONCLUSION 10.5. Although the prevalence level tends to be
similar in similar implementations, the small changes in the preva-
lence level between any two implementation of the JRE (across all
patterns) are statistically significant.

11. Related Work
Cohen and Gil [13] supplied some statistical evidence to the ex-

istence ofcommon programming practice, which “good” program-
mers will follow in their coding. Their conclusions were obtained
from a set of simple metrics, such as: number of parameters of a
method, bytecode size of a method, number of static method calls,
etc. Given the somewhat “technical” nature of these metrics, the
deduction of meaningful conclusions regarding the design of a pro-
gram, from a given vector of metrics values, is not an easy task.

In this paper, we took the natural challenge of bridging the gap:
finding micro patterns which are at a slightly higher level than e.g.,
the number of parameters to a method, but at a lower level than
design patterns.

Van Emde Boas [45] describes the trade off of expressivity (of
the language used for describing design patterns) vs. the complexity
of the pattern detection problem. He showed that lack of syntactic
constraints on the design pattern definitions, results in the detection
problem being undecidable.

Kraemer and Prechelt [36] developed the Pat system which de-
tects structural design patterns (ADAPTER, BRIDGE, COMPOSITE,
DECORATOR, PROXY) by inspecting a given set of C++ header files
(.h ), and storing extracted data asProlog facts. Identification is
carried out by invoking a Prolog query against a set of predefined



Prolog rules describing the identifiable design patterns. This sys-
tem had a detection precision of 14 – 50%. As the authors claim,
the precision can be significantly improved by checking method call
delegation information, which cannot be obtained from header files.
Our approach is expected to yield better results:

• The richer information available at.class file will allow
our tools to inspect method call delegations, detect more types
of patterns, and reduce the number of false positives.

• We are not restricting our research to Gamma et al.’s [22]
design patterns. Any micro pattern is applicable.

Heuzeroth et al. [25] combine static and dynamic analysis for
detection of design patterns (Behavioral:OBSERVER, MEDIATOR,
CHAIN OF RESPONSIBILITY, V ISITOR; Structural: COMPOSITE)
in JAVA applications. The static analyzer applies various predicates
over the source code (.java files) to obtain a set of candidates.
The dynamic analyzer employs code instrumentation techniques to
trace the behavior of the candidates at runtime. A candidates whose
behavior is not conforming with the expected behavior of the rele-
vant design pattern is filtered out. This technique’s dependency on
runtime information is a major drawback.

Brown [9] uses dynamic analysis ofSmalltalkprograms for the
detection of Gamma et al. patterns. His technique is based on trac-
ing of messages sent between objects.

The need for enhanced documentation tools has been stated by
several works in the area of software visualization [19,41,42]. An-
other similar research is the work of Lanza and Ducasse [26], which
suggest a technique for classifying methods ofSmalltalkclasses to
one of five categories by inspecting their implementation. These au-
thors’ classification algorithm is partially based on common naming
conventions.

Micro patterns are related also to a number of systems which
allowed the programmer to add auxiliary, automatically checkable
rules to code. Examples include Minsky’sLaw Governed Regu-
larities [32, 33], or Aldrich, Kostadinov and Chambers’s work on
alias annotation [2]. Micro patterns are different in that they restrict
the programmer’s freedom in choosing such rules (unless the user
comes with a new pattern), but on the other hand give a set of sim-
ple, pre-made, well defined rules backed up by extensive empirical
support.

Statistical inference in the context of software was used in the
past. For example, Soloway, Bonar, and Ehrlich [40], employed
the χ2-test to answer questions such as the extent by which ad-
vanced programmers have greater tendency to use certain program-
ming idioms, and the extent by which language support for the pre-
ferred idioms promotes program correctness.

12. Discussion and Further Research
People use patterns without thinking. This phenomenon is a con-

sequence of the recognition built into every one of us, thatroutineis
easier and safer than the time consuming and error-prone process of
decision making. As demonstrated so many times in the past, pat-
terns exist also in the programming world. In languages with rich
system of attributes such asJAVA it is clear there are many (statis-
tical) correlations between these attributes. For example, we expect
classes which define static fields to define static methods, etc.

Micro patterns step further beyond the simple conclusion that
there are many inter-correlations between the setting of (say) at-
tributes and selection of types. In this paper we showed, probably
for the first time, that there are distinct patterns which the major-
ity of JAVA software follows. In fact, we gave meaning, name and
significance to many of these correlations.

We described a catalog of micro patterns, which can be used as a
mental skeleton to mold mundane modules, allowing programmers
to become more productive. For example, by using the catalog,
much of the coding work is reduced to the mere issue of selecting
a pattern for a class (often dictated by the system design), and then
laboriously filling in the missing details.

We showed (Conc. 7.1) that an overwhelming majority ofJAVA

classes follows one or more of the patterns in the catalog. (The re-
maining classes either fit yet unknown patterns, or represent code
locations which required more skill than routine.) We used sev-
eral statistical methods to increase the confidence that these patterns
capture sound ideas. For example, we gave statistical evidence to
the claim that independent implementations of the same specifica-
tion tends to use the same pattern and that this choice is preserved
in the course of software evolution (Conc. 10.4).

Despite the fact that more than half the classes can be described
by one of the five leading patterns (Conc. 7.3), we found that each
of the patterns in the catalog contributes (Conc. 7.5) to the 4–5
bits or so of design information that the catalog as a whole reveals
(Conc. 7.4).

After noticing (Conc. 7.6) that there is a considerable variety in
the use of patterns in different domains, statistical analysis was car-
ried out to understand better the nature of this variety. This analysis
has shown that in almost half of the cases, changes in a pattern’s
prevalence levels, between two software collections, were not an
artifact of random fluctuation. This indicates that the choice of pat-
terns is not merely a follow up of the language constraints and that
it is effective for distinguishing programming context.

We are currently engaged in devising a specification language,
which based on FOPL, will make it possible to concisely and pre-
cisely define patterns. Within this langauge framework, it is inter-
esting to add weights to part of the definitions, which will make it
possible to measure the proximity of a class to a pattern. Weights
should also make it possible to build systems which not only dis-
cover the use of micro patterns, but also help the user correct his
software—by offering concrete recommendations of how to make
certain classes a better match to the acquired knowledge base.

With the development of automatic tools for tracing patterns, and
the evidence of their significance, it is possible and interesting to ex-
pand the notion of micro patterns by studying kinds of interactions
between classes obeying various micro patterns and even develop-
ing patterns to specify sorts of such interaction. A typical question
of this sort is whether base class category is indeed used more as in-
heritance basis. Such a research direction may even mature to tools
making more global advice. For example, in a hierarchy where a
Pure Type class is subclassed by severalImplementor classes, the
root class can possibly be turned into aTrait or anOutline class, thus
capturing some of the similarities of its subclasses.

On the other hand, we expect that nano-patterns, i.e., patterns of
methods can be defined and traced in the code, and that the com-
bination of micro patterns and nano-patterns will be a better aid to
design, documentation and software comprehension.

Also interesting is the subjective value of patterns, i.e., the mea-
surable extent by which they improve (or degrade) practitioners pro-
ductivity and sense of empowerment.

Finally, perhaps the most challenging work is in discovering con-
crete connections between micro patterns and software quality.
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