
Département d’informatique et de recherche opérationnelle

Université de Montréal

Khashayar Khosravi

Design pattern-enabled
object-oriented metrics

Séminaire GÉLO – 2004/02/18

2/??

Outline

nWhy do we need design patterns?
n Are they theoretical or practical?
nOur methodology to get an answer
nOur problems
n Conclusion

3/??

Why do we need design patterns?

n Why do some programmers write code
– 10 times faster than others?
– That executes 10 times faster than others?
– That has 1/10 as many bugs as others?

[Keutzer, 2003]

n One thing expert designers know not to do is solve
every problem from first principles
– Rather reuse solutions that have worked for them in the past
– When they find a good solution they reuse it again and

again, such experience makes them experts
[E. Gamma et al.]

4/??

Design patterns

n Help software developers
– Choose design alternatives
– Document and maintain
– Standardize terminology
– Make object-oriented software more

• Reusable
• Flexible
• Modular
• Understandable

5/??

Question

n Are design patterns only theoretical or
are they practical too?

6/??

Problems with design patterns

n Difficult to learn design patterns just by reading the “design
patterns book”
[B. Wydaeghe, K. Verchaeve, B. Michiels , B. V. Damme, E. Arckens, and V. Jonckers]

n Some programs written with design patterns are too complicated
and error prone
[M. tatsubori and S. Chiba]

n Programs with comments are more understandable when you
use design patterns
[M. tatsubori and S. Chiba]

n Some object-oriented design patterns are more complicated
[G. Baumgarter,K. Laufer, and F. Russo]

7/??

B. Wydaeghe, K. Verchaeve, B. Michiels, B.
V. Damme, E. Arckens, and V. Jonckers

n Editor
– 50,000 lines of code
– 173 classes
– Developed, installed on different platforms

n Design patterns
– Model-View-Controller
– Observer
– Visitor
– Iterator
– Bridge
– Façade
– Chain of Responsibility

8/??

B. Wydaeghe, K. Verchaeve, B. Michiels, B.
V. Damme, E. Arckens, and V. Jonckers

0+0+-Chain of
respon-
sability

++++++Facade

++++++Bridge

+-0+0Iterator

+-0+0Visitor

+-0+0Observer

++ -+++MVC

Reusability Layman Expert Flexibility Modularity

Understandability

9/??

Peter Wendorf

n 50 programmers
n Code Size

– 800 KLOC C++
– 200 KLOC PL/SQL

n Design patterns
– Proxy
– Observer
– Bridge
– Command

n 8 years of experience in software engineering

10/??

Peter Wendorf

n Dilemma of design patterns
– Proxy

• Use it for more flexibility, access control, and performance but in most
cases these future needs never materialized

• Increase the number of classes (and usually files) ⇒ Increases size
and complexity

• Overload preprocessing and post-processing for requests to classes
• Make debugging much harder

– Bridge
• Change is so hard
• Without good documentation, understanding is not possible

– Command pattern
• Additional function that are never required
• Requirement was about 100 elementary operations in sequences on a

set of data that should be read from a database, but with command
pattern architecture grew into a very complex software

11/??

Peter Wendorf

n Cost of removal
– Proxy

• Remove 3 out of 7 proxy patterns, reduce size
by 200 LOC out of 3000 LOC

– Observer
• New design and implementation of the GUI

– Bridge
• Merge two classes in one
• Remove 2 out of 3 bridge patterns, reduce size

by 190 out of 1400 LOC

12/??

To be, or not to be?

public class Welcome {
public static void main(final String args[]) {

System.out.println(“Hello World!”);
}

}

13/??

Questions

n How can we judge design patterns?

n Are problems from design patterns
themselves or from misusing design
patterns?

14/??

Measurement

n Identify the object
n Each classes of objects have two types

of attribute
– Internal
– External

nMeasure characterized in two ways
– Direct measure (modularity)
– Indirect measure (maintainability)

15/??

Software Quality Models

nQuality models define software qualities
as a hierarchy
– Quality Factors: Represent a behavioral

characteristics (Maintainability)
– Quality Characteristic: Attribute of a quality

factor that relates to software production
and design (Analyzability)

– Quality Metrics: Measure of some aspect
of a quality characteristic (N_STMTS)

16/??

Our methodology (1/2)

n Evaluate quality characteristic models
– Find the best definitions for metrics
– Find the right values for each metrics

(numerical result)
– Find the right metrics for each quality

characteristic
– Find the best characteristics for each

quality factors

17/??

Our methodology (2/2)

n Evaluate design patterns
– Measure quality characteristic of different

types of design patterns
– Assess flexibility, reusability, modularity,

and understandability of programs
implemented with design patterns

– Measure quality characteristic of programs
with and without design patterns

– Ultimately compare the results of both
measurements

18/??

Tools for quality evaluation

n Quality factors
– Standard factors (6 definitions by ISO)
– Others

n Quality characteristic of software systems
– Standard characteristic (21 definitions by ISO)
– Others

n Metrics: Tools to evaluate characteristic of
software
– Standard metrics (30 metrics by ISO)
– Others

19/??

Control Graph Metrics (McCabe)

101IDES_CPXDesign complexity

11IESS_CPIEssential
complexity

11IN_OUTNumber of exit
nodes

11IN_INNumber of entry
nodes

501IVGCyclomatic number

501IN_NODESNumber of nodes

501IN_EDGESNumber of edges

maxMinFormatmnemonicLabel

20/??

Textual metrics (Halstead)

73172.684.75FEFFORTMental effort

1521ITOT_OPNDTotal operand
occurrences

381IDIFF_OPNDDifferent operators

1982ITOT_OPTRTotal operators
occurrences

182IDIFF_OPTRDifferent operators

3503IPR_LGTHProgram length

583IVOC_SZVocabulary size

274:482:00FPR_SZProgram size

2032.584.75FPR_VOLProgram Volume

1255.984.75FINTELLIntelligence content

0.950.00FN_ERRORSEstimated number of
errors

1.000.027FPR_LVLProgram level

36.001.00FPR_CPXTYProgram difficulty

MinMaxFormatMnemonicLabel

1255.981.56FLANG_LVLLanguage level

4065.150.26FCODE_TProgram time

21/??

Control graph metrics (others)

MinMaxFormatMnemonicLabel

10ICOND_STRU
CT

Number of
exits of

condition
structures

00IUNCOND_JU
MP

Number of
unconditio
nal jump
(GOTO)

MinMaxFormatMnemonicLabel

90IDRCT_CA
LLS

Direct
called
compo
nents

Basic count

4.01.00FVOC_F =
PR_LGTH /

VOC_SZ

Vocabular
y

frequency

MinMaxFormatMnemonicLabel

7.003.00FAVG_S =
PR_LGTH /
N_STMTS

Average
size of

statements

40IN_NEST =
MAX_LVLS –

1

Number of
nested
level

Call metrics User defined metrics

MinMaxFormatMnemonicLabel

100IN_COMNumber
of

comment
s

500IN_STMTSNumber
of

statemen
ts

22/??

Others
n Correctness

– Traceability
– Completeness
– Consistency

n Reliability
– Consistency
– Accuracy
– Error tolerance

n Efficiency
– Execution efficiency
– Storage efficiency

n Integrity
– Access control
– Access audit

n Reliability
– Suitability
– Accuracy
– Interoperability
– Security

n Efficiency
– Time behavior
– Resource behavior

ISO

23/??

Others
n Usability

– Operability
– Training
– Communicativeness

n Maintainability
– Simplicity
– Conciseness
– Self descriptiveness
– Modularity

n Testability
– Simplicity
– Instrumentation
– Self descriptiveness
– Modularity

n Usability
– Understandability
– learnability
– Operability

n Maintainability
– Analyzability
– Changeability
– Stability
– Testability

ISO

24/??

Others
n Flexibility

– Self descriptiveness
– Expendability
– Generality
– Modularity

n Portability
– Self descriptiveness
– Software system independence
– Machine independence

n Reusability
– Generality
– Modularity
– Software system independence
– Machine dependence

n Interoperability
– Modularity
– Communications commonality
– Data commonality

n Functionality
– suitability
– accuracy
– interoperability
– security

n Portability
– Adaptability
– Installability
– Conformance
– Replaceability

ISO

25/??

Definition of quality

n Maintainability
– Analyzability

• 25*VG + 25*N_STMTS + 25*AVG_S

– Changeability
• 25*AVG_S + 25*N_NEST + 25*UNCOND_JUMP + 25*VOC_F

– Stability
• 25*N_IN + 25*N_OUT + 25*DRCT_CALLS + 25*UNCOND_JUMP

– Testability
• 25*COND_STRUCT + 25*N_NEST + 25*UNCOND_JUMP + 25*VG

n Value rate
– EXCELLENT: 99 - 100
– GOOD: 66 - 99
– FAIR: 33 - 66
– POOR: 0 - 33

26/??

Theoretical problems

n Different definitions for
– Metrics
– Quality characteristics
– Quality factors

n Difficult to find the best definitions for
quality factors

27/??

Theoretical problems

28/??

Practical problems

n Combination of metrics to implement
one characteristics

n Some characteristics can be evaluated
by experts only

n Implementation of quality characteristics
with standard metrics

n Implementation of metrics

29/??

Example: Practical problems

n Portability (ISO)
– Adaptability
– Installability
– Conformance
– Replaceability

n Usability (McCall)
– Understandability
– Learnability
– Operability

n Portability (McCall)
– Self descriptiveness
– Software system independence
– Machine independence

n Usability (ISO)
– Operability
– Training
– Communicativeness

n Portability (TRW)
– Device

independence
– Completeness

Definition of characteristics

30/??

Example: Practical problems

Functional adequacy

X = 1 – A / B

A = Number of functions in
which problems are detected
in evaluation

B = Number of functions
evaluated

0 ≤ X ≤ 1
(The closer to 1.0, the more
adequate)

Functional implementation completeness

X = 1 – A / B

A = Number of missing functions detected in
evaluation

B = Number of functions described in
requirement specifications

0 ≤ X ≤ 1
(The closer to 1.0, the more adequate)

ISO/IEC TR 9126-2:2003(E) External Suitability metrics

31/??

From that point on…

n Select the best metrics
n Evaluate quality characteristics with the

metrics (and experts)
n Find best model for design patterns
n Implement enough programs with and

without design patterns
n Evaluate design pattern quality

characteristics for all design patterns

32/??

Conclusion

n Why do we need design patterns?
– It is depend on what we are doing…

n Are they theoretical or practical?
– It is depend on the type of software and models of design patterns

n Our methodology to get the answer
– Apply quality characteristics models on design pattern models
– Develop a suite of programs with and without design patterns and

measure their quality characteristics

n Our problems
– What are the best definitions for

• Software quality factors
• Quality characteristic
• Software metrics

33/??

References

n Design patterns elements of reusable Object Oriented software,
E. Gamma, R. Helm, R. Johnson, J. Vlissides

n Characteristics of software quality,
B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. Macleod & M. J. Merrit

n McCabe & Associates,
www.mccabe.com

n K. Keutzer, UC Berkeley,
http://www-inst.eecs.berkeley.edu/~cs169/sp03/downloads/lectures/

n M. Tatsubori & S. Chiba, University of Tsukuba, Japan
http://citeseer.nj.nec.com/tatsubori98programming.html

n F. A. Rabhi, University of New South Wales,
http://citeseer.nj.nec.com/598519.html

n G. Baumgarter & K. Laufer & V. F. Russo, Purdue University & Loyola University,
http://citeseer.nj.nec.com/baumgartner96interaction.html

n B. Wydaeghe, K. Verchaeve, B. Michiels, B. V. Damme, E. Arckens & V. Jonckers, Universiteit Brussel,
http://citeseer.nj.nec.com/288953.html

n L. Tahvildari & A. Singh, University of Waterloo,
http://www.swen.uwaterloo.ca/~ltahvild

n Midwest Quality Co.,
http://www.midwestquality.com

34/??

Thank you for your attention

n Any Comments? n Any Question?

