Design pattern-enabled
obj ect-oriented metrics

Khashayar Khosravi

Séminaire GELO — 2004/02/18

! l Département d 'informatique et de recherche opérationnelle
Université de Montréal

Outline

® Why do we need design patterns?
m Are they theoretical or practical?

m Our methodology to get an answer
m Our problems

m Conclusion

. Why do we need design patterns?

= Why do some programmers write code
— 10 times faster than others?
— That executes 10 times faster than others?
— That has 1/10 as many bugs as others?

[Keutzer, 2003]

= One thing expert designers know not to do Is solve
every problem from first principles
— Rather reuse solutions that have worked for them in the past

— When they find a good solution they reuse it again and
l” again, such experience makes them experts

[E. Gamma et al.]

Design patterns

m Help software developers
— Choose design alternatives
— Document and maintain
— Standardize terminology

— Make object-oriented software more
* Reusable
e Flexible
 Modular

e Understandable

Question

m Are design patterns only theoretical or
are they practical too?

Problems with design patterns

m Difficult to learn design patterns just by reading the “design
patterns book”

[B. Wydaeghe, K. Verchaeve, B. Michiels, B. V. Damme, E. Arckens, and V. Jonckers]

m Some programs written with design patterns are too complicated
and error prone

[M. tatsubori and S. Chiba]

m Programs with comments are more understandable when you
use design patterns

[M. tatsubori and S. Chiba]

m Some object-oriented design patterns are more complicated

[G. Baumgarter, K. Laufer, and F. Russo]

B. Wydaeghe, K. Verchaeve B. Michiels, B.
V. Damme, E. Arckens, and V. Jonckers

m Editor
— 50,000 lines of code
— 173 classes
— Developed, installed on different platforms

m Design patterns

— Model-View-Controller
— Observer

— Visitor

— lterator

— Bridge

— Facade

— Chain of Responsibility

B. Wydaeghe, K. Verchaeve B. Michiels, B.
V. Damme, E. Arckens, and V. Jonckers

Understandability

Modularity | Flexibility Expert Layman | Reusability
MVC + + + ++
Observer 0 + 0 +
Visitor 0 + 0 +
lterator 0 + 0 +
Bridge + + + + ++
Facade + + + + ++
Chain of + 0 + 0
respon-
sability

m 50 programmers

m Code Size

— 800 KLOC C++
— 200 KLOC PL/SQL
m Design patterns
— Proxy
— Observer
— Bridge
— Command
m 8 years of experience in software engineering

Peter Wendorf

Peter Wendorf

m Dilemma of design patterns

— Proxy

* Use it for more flexibility, access control, and performance but in most
cases these future needs never materialized

* Increase the number of classes (and usually files) P Increases size
and complexity

» Overload preprocessing and post-processing for requests to classes
» Make debugging much harder
Bridge
 Change is so hard
» Without good documentation, understanding is not possible
— Command pattern
* Additional function that are never required

* Requirement was about 100 elementary operations in sequences on a
set of data that should be read from a database, but with command
pattern architecture grew into a very complex software

Peter Wendorf

m Cost of removal

— Proxy

 Remove 3 out of 7 proxy patterns, reduce size
by 200 LOC out of 3000 LOC

— Observer
 New design and implementation of the GUI
— Bridge
* Merge two classes in one
 Remove 2 out of 3 bridge patterns, reduce size

m by 190 out of 1400 LOC

To be, or not to be?

public class Wl cone {
public static void main(final String args[]) {
Systemout.printin(“Hello Wrld!”);

- Questions

®m How can we judge design patterns?

m Are problems from design patterns
themselves or from misusing design
patterns?

m |[dentify the object
m Each classes of objects have two types
of attribute

— Internal
— External

m Measure characterized in two ways
— Direct measure (modularity)
m — Indirect measure (maintainability)

- Software Quality Models

m Quality models define software gualities
as a hierarchy

— Quality Factors: Represent a behavioral
characteristics (Maintainability)

— Quality Characteristic: Attribute of a quality
factor that relates to software production
and design (Analyzabillity)

— Quality Metrics: Measure of some aspect
of a quality characteristic (N_STMTS)

. Our methodology (1/2)

m Evaluate quality characteristic models
— Find the best definitions for metrics

— Find the right values for each metrics
(numerical result)

— Find the right metrics for each quality
characteristic

— Find the best characteristics for each
guality factors

. Our methodology (2/2)

m Evaluate design patterns

— Measure quality characteristic of different
types of design patterns

— Assess flexiblility, reusability, modularity,
and understandability of programs
Implemented with design patterns

— Measure quality characteristic of programs
with and without design patterns

— Ultimately compare the results of both
H measurements

Tools for quality evaluation

m Quality factors

— Standard factors (6 definitions by ISO)
— Others

m Quality characteristic of software systems
— Standard characteristic (21 definitions by 1SO)
— Others

m Metrics: Tools to evaluate characteristic of
software

— Standard metrics (30 metrics by ISO)
— Others

Control Graph Metrics (McCabe)

Label mnemonic Format Min max
Number of edges N_EDGES I 1 50
Number of nodes N_NODES I 1 50

Cyclomatic number VG I 1 50
Number of entry N_IN | 1 1
nodes
Number of exit N_OUT I 1 1
nodes
Essential ESS_CPI I 1 1
complexity
Design complexity DES_CPX I 1 10

Textua metrics (Halstead)

Label Mnemonic Format Max Min
Total operand TOT_OPND | 1 152
occurrences
Different operators DIFF_OPND I 1 38
Total operators TOT_OPTR I 2 198
occurrences
Different operators DIFF_OPTR I 2 18
Program length PR_LGTH I 3 350
Vocabulary size VOC_Sz I 3 58
Program size PR_Sz F 2:00 274:48
Program Volume PR_VOL F 4.75 2032.58
Intelligence content INTELL F 4.75 1255.98
Estimated number of N_ERRORS F 0.00 0.95
errors
Program level PR_LVL F 0.027 1.00
Program difficulty PR_CPXTY F 1.00 36.00
Mental effort EFFORT F 4.75 73172.68
Program time CODE_T F 0.26 4065.15
Language level LANG_LVL F 1.56 1255.98

Control graph metrics (others) Basic count

Label Mnemonic Format Max Min Label Mnemonic Format Max Min
Number of UNCOND_JuU | 0 0
unconditio MP Number N_STMTS | 0 50
nal jump of
(GOTO) statemen
ts
Number N_COM | 0 10
Number of COND_STRU I 0 1 of
exits of CT comment
condition s
structures
Call metrics User defined metrics
Label Mnemonic Format Max Min Label Mnemonic Format Max Min
Number of N_NEST = I 0 4
nested MAX_LVLS —
level 1
Direct DRCT_CA I 0 9
called LLS
compo Vocabular VOC_F = F 1.00 4.0
nents y PR_LGTH/
frequency VOC_SZz
Average AVG_S = F 3.00 7.00
size of PR_LGTH/
statements N_STMTS

Others

m Correctness
— Traceabillity
— Completeness
— Consistency
= Reliability
— Consistency
— Accuracy
— Error tolerance
m Efficiency
— EXxecution efficiency
— Storage efficiency
= Integrity
— Access control
— Access audit

|SO

= Reliability
— Suitability
— Accuracy
— Interoperability
— Security
m Efficiency
— Time behavior
— Resource behavior

Others

= Usability
— Operability
— Training
— Communicativeness
= Maintainability
— Simplicity
— Conciseness
— Self descriptiveness
— Modularity
m Testability
— Simplicity
— Instrumentation
— Self descriptiveness
— Modularity

|SO

= Usability
— Understandability
— learnability
— Operability
= Maintainability
— Analyzability
— Changealbility
— Stability
— Testabllity

Others |SO

= Flexibility

o = Functionality
— Self descriptiveness

— Expendability — suitability
— Generality — accuraty
— Modularity — Interoperability
= Portability — security
— Self descriptiveness = Portability
— Software system independence _ Adaotabilit
— Machine independence P ”y
= Reusability — Installability
— Generality — Conformance
— Modularity — Replaceability

— Software system independence
— Machine dependence

= Interoperability
— Modularity
— Communications commonality
— Data commonality

Definition of quality

= Maintainability
— Analyzability
¢ 25*VG + 25*N_STMTS + 25*AVG_S
— Changeability
e 25*AVG_S + 25*N_NEST + 25*UNCOND_JUMP + 25*VOC_F
— Stability
« 25*N_IN + 25*N_OUT + 25*DRCT_CALLS + 25*UNCOND_JUMP
— Testability
« 25*COND_STRUCT + 25*N_NEST + 25*UNCOND_JUMP + 25*VG
m Value rate
— EXCELLENT: 99 - 100
— GOOD: 66 - 99
— FAIR: 33 - 66
— POOR: 0 - 33

Theoretical problems

m Different definitions for
— Metrics
— Quality characteristics
— Quality factors

m Difficult to find the best definitions for
guality factors

Henderson-Sellers LOOXI*
Consider a set of pr methods, My , My ., M,
The methods access @ data amobuees, A, 4, A,
Let 3(vL) = nmbar of atmibutes accessed by method M
Let mi{A,) = munber of methods that access dara Ay

Then

If each method accessas all atmibutes ten mlA) =m so

12
— ¥m|—m
Lo = 41

1-m
{m) —m
1-m
=10

If each rethod accessas only one stiribute and a differsnt atribuse then we have:

1 a

So &t mscoinmun cohesion LOOM®* =0

At Henderson-Sellers' "mininnm cobesien” LOOM* =1

- Theoretical problems

Lack of Cohesion (LCOM)

-Measures the cohesion or lack of a class; evaluate the dissimilarity
of methods in a class by instance variables or attributes.

-LCOM is measured by counting the number of pairs of methods that
have no attributes in common, minus the number of methods that do.
A negative difference corresponds to LCOM value of zero.

-Low cohesion 15 a sign of high complexity, and shows that the class
can be subdivided. High cohesion indicates simplicity and high
potential for reuse.

Example:
Device Claws Device {

- int reading type;
ypa Boolean mode=false;
reading: int =

odie: b oole:
b oolem public int update (int @) fremen a = reading: |

computexing yrint int public int compute(ing x, int v) fretum v rtepe - reading: |
updatefa: int)int public vaid et fine 1) {if ¢ ==F mode=mrus}
testit:int) 4

LOOM(Devicei=2—1=1

Lack of Cohesion in Methods: (LOCOM):
Deffnigon: The muanber of differsent methods withdn a class that reference a given
Instance variable.
Facts:
Encapsulaton is promoted by the nse of cohasive methods within a class.
Clzsses thar should be split into smeller classes are ones that have & lack of
cohesion.
® Flaws o the design of classes can be identified by sny measure of
disparstensss of methods .
Ermrors are more Hkely to ooonr in the developiment process when there is
complexity cansed by low cobesion.
How to fisure this out:
Find the pomber of methods thar are in 3 class that refarence 3 given instance
wariable by searching from the root pede of the class 1o the Iast child.

Chidamber and Kemerer (19933 LCOMA
Let C be a class, with methods b, M. ., M
Let L. = the set of instapce variables nsed by method M
Let P={ (&, L) | L and I, do ot intersect }
Let Q= { (I, L)| L and I; do intersect }
IffP|>=| Q| then
LOOM= P |- |Q

aloa
LCOM =20

Practical problems

m Combination of metrics to implement
one characteristics

m Some characteristics can be evaluated
by experts only

m Implementation of quality characteristics
with standard metrics

B = Implementation of metrics

Example: Practical problems

Definition of characteristics

m Usability (ISO) m Usability (McCall)
— Operability — Understandability
— Training — Learnability
— Communicativeness — Operability
m Portability (ISO) m Portability (TRW) = Portability (McCall)

— Adaptability — Device — Self descriptiveness

— Installability independence — Software system independence

— Conformance — Completeness

— Machine independence
— Replaceability

Example: Practical problems

ISO/IEC TR 9126-2:2003(E) External Suitability metrics
H\H

Functional adequacy Functional implementation completeness
X=1-A/B X=1-A/B
A = Number of functions in A = Number of missing functions detected in
which problems are detected evaluation
in evaluation
B = Number of functions described in
B = Number of functions requirement specifications
evaluated
OEXEL
O£XE1 (The closer to 1.0, the more adequate)

(The closer to 1.0, the more
adequate)

From that point on...

m Select the best metrics

m Evaluate quality characteristics with the
metrics (and experts)

® Find best model for design patterns

m Implement enough programs with and
without design patterns

m Evaluate design pattern quality
characteristics for all design patterns

Conclusion

= Why do we need design patterns?
— Itis depend on what we are doing...

m Are they theoretical or practical?
— It is depend on the type of software and models of design patterns

m Our methodology to get the answer
— Apply quality characteristics models on design pattern models
— Develop a suite of programs with and without design patterns and
measure their quality characteristics
m Our problems
— What are the best definitions for
» Software quality factors

* Quality characteristic
» Software metrics

References

m Design patterns elements of reusable Object Oriented software,
E. Gamma, R. Helm, R. Johnson, J. Vlissides
m Characteristics of software quality,

B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. Macleod & M. J. Merrit
m McCabe & Associates,
www.mccabe.com
m K. Keutzer, UC Berkeley,
http://www-inst.eecs.berkeley.edu/~cs169/sp03/downloads/lectures/
M. Tatsubori & S. Chiba, University of Tsukuba, Japan
http://citeseer.nj.nec.com/tatsubori98programming.html
m F. A Rabhi, University of New South Wales,
http://citeseer.nj.nec.com/598519.html
G. Baumgarter & K. Laufer & V. F. Russo, Purdue University & Loyola University,
http://citeseer.nj.nec.com/baumgartner96interaction.html
m B. Wydaeghe, K. Verchaeve, B. Michiels, B. V. Damme, E. Arckens & V. Jonckers, Universiteit Brussel,
http://citeseer.nj.nec.com/288953.html

m L. Tahvildari & A. Singh, University of Waterloo,
http://www.swen.uwaterloo.ca/~Itahvild
m Midwest Quality Co.,

http://mww.midwestquality.com

Thank you for your attention

= Any Comments? = Any Question?

